OPQ Cloud: A scalable software framework for the aggregation of
distributed power quality data

Anthony J. Christe
Collaborative Software Development Laboratory
Department of Information and Computer Sciences
University of Hawai’i, Honolulu, HI 96822
achriste @hawaii.edu

April 10, 2014

Abstract

Power quality issues can be caused in a variety of situations. Voltage fluctuations, frequency fluctu-
ations, and harmonics are all power quality issues which can be caused by weather, high penetration of
renewables, man-made issues, or other natural phenomena. We designed a software framework which
can aggregate crowdsourced distributed power quality measurements in order to study power quality
issues over a dense geographic area.

Contents
1 Introduction and Motivation
2 A Software and Hardware Diagnostic Framework

3 Software Implementation

3.1 Obtaining the Software
32 GridMap oo
3.2.1 Generating the Polygon Points
3.2.2 Dynamic Sizing of Grid
3.2.3 Grid Square Naming
324 ImportancetoOPQ
3.3 OPQCloud Features
331 Sign-Up................
3.3.2 PQ Measurements
333 PQEvents.
334 DataSharing
335 Nearby PQEvents
3.3.6 Device Administration
3.4 OPQ Cloud Infrastructure
34.1 Database Design

3.4.2 Asynchronous 2-Way Communication
3.5 OPQProtocol

3.5.1 Magic Word Header
352 Type.
3.53 Sequence Number
354 Deviveld
355 Timestamp
35.6 Bitfield
3.5.7 PayloadSize
358 Reserved
359 Checksum.
35.10 Payload
3.6 Reference Implementation of Protocol
3.7 OPQ Simulator
3.7.1 Single Packet Simulation
3.7.2 Distributed Simulations

4 Evaluation and Results

4.1 Using the OPQ Simulator
4.2 Performance and Scalability
42.1 Response Time
4.2.2 Database Profiling

5 Future Work

5.1
52
53
54
5.5
5.6
5.7

External Causes e e e e e e
Public PQMonitoring e e e e e e e
Security and Privacy
Usability Testing o e e e e e e e e
Other Event Types o e
Integration with Other Sources e
Data Analytics o e e e e

6 Conclusion

A Appendix: Software Used

Al
A2
A3
A4
AS
A6
A7
A8
A9

Development Environment e e e
Cloudbees e e e e e e
Play Framework e e
Ebean ORM e e e e
Twitter Bootstrap L e
Fuel UX . . . e e e e
Leaflet o e e e e e
OpenStreetMap o e e e e e e e e
Java Websocket L e e e e

A0 JavaFX . . o e
A.11 Static Analysis L e e e

B Appendix: Screenshots

List of Tables
1 Hawaii Grid Square Bounding Box
2 Naming of Child Grid Squares e
3 Persisted Entities
4 Protocol Layout e
5 Packet Types o o e e e e
6 Single Packet Simulation Fields o o
7 Distributed Simulation Fields o
8 Database Profiling e e

List of Figures
1 Naming Convention for Coarsest Grid Layer.
2 Naming Convention for First Children.
3 Recursive Naming of Children.
4 Crow’s Foot DB ER diagram. e
5 Web Service and DB Response Times.
6 OPQ Wizard Screenshot. e e e

19
19
19
20
20
20
20
20

20

21
21
21
21
21
21
21
22
22
22
22
22

23

10
11
12
13
14
15
16
17
18

OPQ Wizard Screenshot. e e e 24

OPQ Wizard Screenshot. e e 25
OPQ Wizard Screenshot. e 26
OPQ Wizard Screenshot. e e e 27
OPQ Wizard Screenshot. e e e e e 28
Private PQ Measurements. it i e e e e e e e e e e e e e 29
Private PQEvents. e e 30
Nearby PQEvents. e 31
Alert Administration. L. e e e e e e e e 32
Device Administration. L e e e e e e e e e e e e 33
OPQ Simulator Single Packet 34
OPQ Simulator Stress Test Simulation 35

1 Introduction and Motivation

According to the Office of Electricity Delivery & Energy Reliability, the electricity that we consume in the
United States should have a frequency of 60 Hz and a voltage of 120 V [2]. Power quality (PQ) issues arise
whenever there is a deviation from these standards or when other harmonics get introduced into the power.

Common PQ issues include voltage sag, voltage flicker, and harmonics. [5]. For our current OPQ
project, we’re only measuring voltage and frequency. However, we plan to study the affects of harmonics
through total harmonic distortion (THD) in the future.

We’re initially focusing our research efforts on the state of Hawaii. Hawaii is currently in a state of
transition changing its electrical grid from its current 90% fossil fuels / 10% renewables to 60% fossil fuels
/ 40% renewables by 2030 [1]. Consumers and businesses are installing photovoltaics at increasingly high
rates [3]. Common issues that can occur with renewables on the grid include undervoltage, overvoltage,
output power fluctuation, harmonic distortion, and frequency fluctuation [6]. Because of this, consumers are
running into roadblocks by way of the utility companies due to possible grid instabilities that can arise with
renewable energy sources [4] being introduced to the power grid.

A major problem is that there is no data that consumers can point to that says “hey, the power quality in
our neighborhood is good, so we should be able to install photovoltiacs. Instead consumers only know what
they’re told by the utilities. Even then, utilities are not mandated to report on PQ information.

On the flip side, distributed PQ data does not exist for the utilities either, and they have to force con-
sumers to wait until their neighborhood can be studied by utility engineers to ensure that the addition of
renewables is not going to harm the grid.

Power quality also has an effect on large industries’ bottom lines. Laskar et al. found that voltage
fluctuations can damage sensitive electronic equipment and can cost companies quite a lot of money. For
example, a semiconductor production plant will lose over 5 million USD per power event. Financial trading
companies will lose over 8 million USD an hour during power events [8]. It’s important to note that these
are just power events, not power outages. It’s important for companies to understand the PQ that is coming
into their plants and to also understand the PQ of the neighborhoods around them and how that PQ can affect
their bottom line.

2 A Software and Hardware Diagnostic Framework

Our project contains a hardware devices for measuring voltage and frequency and also a software framework
for aggregating distributed PQ measurements and events. The software framework is the focus of this paper.

The OPQ project provides a software solution which aggregates crowd sourced distributed PQ data. We
provide real time monitoring and alerts for users when PQ events occur. We also provide a simple wizard
style sign up which allows users to connect to their OPQ hardware devices with ease. Users can manage
their PQ data in an intuitive and anonymous way. Users can also receive alerts via email or SMS.

Our project is built using a large selection of open source technologies. For a full list of software and
libraries used in our project, see section A.

We believe that our system can provide crowd sourced distributed PQ data to consumers, businesses,
and utilities alike. We hope to provide a transparent way of collecting and distributing PQ data. We want
to empower consumers to understand the quality of the power feeding into their homes and to understand
the PQ of the neighborhood they reside in. Businesses should be able to safeguard their electrical assets by
assessing the possible threats to their company due to PQ. We want utilities to have a better understanding of
PQ so that they can work with correcting PQ issues. Utilities can also use our data to stand out-of-the-way

of renewables when there aren’t PQ issues. We believe that the OPQ project is a step closer to realizing a
smarter grid.

One of the main tenants of our project is openness. We provide openness in three ways. Our software is
built on top of open source libraries. Our software is itself released under an open source license (GPL v3),
and our data is open so that other researchers and the public can make informed decisions about PQ.

3 Software Implementation

3.1 Obtaining the Software

All software and related documentation for our project can be found at OPQ’s github page <https://
github.com/openpowerquality/>.

3.2 Grid Map

A useful tool when working with geographically distributed data is a dynamic map to visualize PQ events
and other PQ related information. We’re using the Leaftlet Javascript library to provide a mapping interface.
For the actual map imagery, we’re using the open licensed OpenStreetMap tiling images.

Leaflet provides utilities for placing markers and icons, and we heavily used this early on to display
the location of PQ events. We realized that this approach caused several issues. First, we do not want to
compromise our users’ privacy by displaying the exact location of their OPQ device on a map. Second, if
multiple PQ events happen near each other, the map would become cluttered with icons.

We came up with an approach that allows users to select their own level of anonymity while still provid-
ing useful and easy to parse visual information.

The Leaflet library allows the for creation of polygon layers where the points of the polygon can be
encoded in JSON. We created a Javascript grid-map library which utilizes Leaflet’s polygon layer and splits
the map up into a series of evenly divided grid squares (similar in idea to a checker board). We wrapped this
functionality up into a library using the Javascript module pattern to separate the public API from the back
end code. This library allows us to use our map interface in separate locations in our cloud service.

3.2.1 Generating the Polygon Points

To generate an evenly spaced grid, we identified the NW and SE latitude and longitude points of the bound-
ing box (BB) that contains the area of interest our grid should cover. The BB we chose for Hawaii is outlined
in table 1.

Table 1: Hawaii Grid Square Bounding Box

BB Point Location | Latitude Longitude
North West NW of Niihau | 22.534353 | -161.004639
South East | SE of Big Island | 16.719592 | -151.853027

We can calculate the latitude (¢) and longitude (\) of a point (¢2, A2), given a starting point (1, A1),
bearing (©), distance (d), and angular distance (AD = m) with the following formula which
uses the distance over a great arc circle as an approximation for the shape of the earth.

<https://github.com/openpowerquality/>
<https://github.com/openpowerquality/>

¢ = asin(sin(¢1 * cos(AD) + cos(¢1) + sin(AD) x cos(0©))

A2 = A1 + atan2(sin(©) x sin(AD) * cos(¢p1), cos(AD) — sin(p1) * sin(p2))

With the above formula, we start with the NW point of the BB, and generate all points due South of the
starting point within the BB with a given distance interval. This process generates the first point for each
of the row in our point matrix. Then for each starting point, we generate all points due East within the BB.
The result of this process is a matrix of evenly spaced points which can then be used to create polygons of
evenly spaced grid squares. It should be noted that we optimize our library so that only polygons within the
current browser window viewing area are generated.

3.2.2 Dynamic Sizing of Grid

Grid scale is defined as the length of each square polygon in the grid. That is, a grid scale of 256 kilometers
contains grid squares which each are 256 kilometers by 256 kilometers. The coarsest grid scale that we
support is 256 kilometers and the finest grid scale is % kilometer.

We designed our grid-map library so that when the map is zoomed out, it displays the coarsest grid of
256 kilometers. As the map is zoomed in, each grid square is recursively divided into four smaller squares,
each with a grid-scale that is exactly one-half of its parent’s. This process continues until the map is at max
zoom and each grid square represents % of a kilometer.

The location of any grid is invariant to both zoom and pan as long as the NE BB starting point is
not changed. This makes it easy to associate ids with individual grid squares so that devices can then be
associated with individual grid squares.

3.2.3 Grid Square Naming

In order to associate OPQ hardware devices with locations on the grid, we developed a naming scheme that
stores the parent information of each grid in the name itself. Grids at the coarsest grid scale (256 kilometers)
are simply named by their row () and column (c) using the format r, ¢ :. We show an example of how the
coarsest grid squares would be named in figure 1.

For each level that the grid becomes more fine, each square recursively divides into four squares. We
can name each of these child squares by its location in the parent square. For each finer level, we simply
append this location id onto its parent’s id.

Table 2: Naming of Child Grid Squares

Position in Parent | ID

Top Left 0
Top Right 1
Bottom Right 2
Bottom Left 3

Figure 2 shows the ids of the first level of children under the parent grid square.

We can then recursively use the same naming scheme for each level of children in the grid. For example,
a grid id of “0,0:13” represents the following information. At the coarsest level, the location “0,0:” represents
the top left 256x256 kilometer grid square. The following “1” represents that the 128x128 kilometer child
of the coarsest level is located at the top right of its parent square. The following “3” represents that the

Figure 1: Naming Convention for Coarsest Grid Layer.

Figure 2: Naming Convention for First Children.

grandchild of the coarsest square is in the bottom left of the child’s square. To illustrate the concept of
recursive ids, please refer to 3.

3.2.4 Importance to OPQ

We want our users to feel comfortable sharing their PQ information. We want to empower our users to select
the amount of anonymity they require when sharing the location of their OPQ hardware device. Our grid
system allows users to select any grid square at any grid scale for the location of their device. This means
that if a user is comfortable giving away the relative location of their home, they can select a % kilometer
grid square which contains their device. If they are not as comfortable with such an accurate location, they
can choose a larger grid square, perhaps % kilometer, 2 kilometers, 4 kilometers, etc.

We can also use the user’s defined location to determine their local PQ neighborhood. A user is said
to be part of a neighborhood if they’ve selected their location with a grid scale of less than or equal to 4
kilometers. Their neighborhood is all parent grid squares up to and including 4 kilometers.

3.3 OPQ Cloud Features
3.3.1 Sign-Up

Our sign up process collects information about the owner of an OPQ hardware device as well as information
about the device itself. We use a custom wizard style dialogue provided by Fuel UX to make it easy for
users to set up their device(s).

After collecting the user’s contact information, the wizard associates the user’s account with their OPQ
hardware device(s). To do this, we ask for the provided id number of the OPQ device(s). After the device
is associated with the user’s account, we allow the user to opt-in to our data sharing program by selecting
their approximate location on our grid-map. This feature makes it possible to anonymously share your PQ
data with the community. Finally, we collect the user’s SMS and preferred contact email so that users can
be alerted by email, SMS, or both when PQ events take place.

Examples of our sign up wizard can be found in the attached screenshots as figures 6, 7, 8, 9, 10, and
11.

3.3.2 PQ Measurements

Our measurements section shows 20 voltage and frequency measurements per page. The measurements are
ordered by most recent. The user is able to select which of their devices they want to show PQ measurements
for. Users can also filter measurements by the last minute, hour, day, week, month, year, or all.

An example of our measurements page can be found in the attached screenshots as figure 12.

3.3.3 PQ Events

The PQ events page is the first page a user is redirected to after logging in. This page shows 20 PQ events
per page from all the user’s devices. The events are ordered by most recent first. This page shows the type
of PQ event (frequency, voltage, or device), the value of the event (i.e. 65 Hz), the timestamp of the event,
and the duration of the event (i.e. 2000 milliseconds). Users can also filter events by the last minute, hour,
day, week, month, year, or all.

This page also allows users to tag PQ events with an external cause. For instance, possible tags might

LR N3

include “downed power line”, “tropical storm Flossie”, or “refrigerator condenser”.

10

Figure 3: Recursive Naming of Children.

11

An example of the PQ Events page can be found in the attached screenshots as figure 13.

3.3.4 Data Sharing

OPQ users are able to share their PQ information by opting in to our community data sharing program. In
order for a user to share their data, they simply select the finest grid scale their comfortable with that their
OPQ device resides in. When users share their data, they also get access to nearby PQ events from other
users sharing their data within the same neighborhood. Users may complete this process during sign up, or
opt-in (or out) at any later time.

3.3.5 Nearby PQ Events

OPQ users in the same neighborhood can receive alerts about PQ events within their neighborhood. A
neighborhood is chosen by the user when they select to share their data and select the appropriate grid
square for their device. A neighborhood is defined as the user’s selected grid square and all parent squares
up to 4 kilometers.

An example of our device administration page can be found under the attached screenshots as figure 14.

3.3.6 Device Administration

With our device administration page, users can easily add more OPQ devices to their profile or update
details about existing devices that they own. Users can give nicknames to devices such as “lab”, “garage”,
or “warehouse #3” so that they don’t have to memorize the id number of each device. Users can also
customize the types of PQ alerts they receive during PQ events for each device. They can define the e-mail
and SMS number for alerts per device.

An example of our device administration page can be found under the attached screenshots as figure 16.

3.4 OPQ Cloud Infrastructure
3.4.1 Database Design

We’re using the Ebean ORM for persistence throughout our cloud service. Ebean is backed using a MySQL
database. The persisted entities in our software are described in table 3.

Table 3: Persisted Entities

Entity Description
Alert User defined e-mail or SMS alert.
Event A PQ event.
ExternalCause | A user tagged external cause (i.e. tropical storm).
Measurement A single frequency and voltage measurement.
OpgDevice A single OPQ hardware unit’s information.
Person A single owner of an OPQ hardware device.

The table structure is described as a Crow’s Foot ER diagram in figure 4.

12

Person
+Mame: String
+Email: String
+LoginInfo: Bytel]

F.Y
Event i) H OpgDevice H—#&« Measurement
+Type: EventType +Deviceld: Long +Frequency: Double
+Value: Double +Voltage: Double
+Duration: Long T +Timestamp: Long
+Timestamp: Long
¥
1 &5
F. .\
ExternalCause Alert
+Description: String +Smshumber: String
+Details: String +AlertEmail: String
+Timestamp: Double +ReceiveAlerts: Boolean

Figure 4: Crow’s Foot DB ER diagram.

3.4.2 Asynchronous 2-Way Communication

Not only can OPQ hardware devices send information to the OPQ cloud service, but the OPQ cloud service
also has the infrastructure to send or request information from OPQ devices. In order for the cloud service
to send or request information from OPQ devices, the OPQ devices first have to ping the cloud service to
tell the cloud service that that device exists and is online.

This is achieved when the cloud service receives a ping packet from an OPQ device, and then creates a
mapping from that device’s ID to the WebSocket handler associated with that device.

When the cloud service needs to contact the device, it looks up the appropriate WebSocket handler from
the map, and then uses that WebSocket handler to communicate with the device.

Devices are pruned from the mapping if they have not sent any data for over an hour.

3.5 OPQ Protocol

We’ve created a custom communication protocol between OPQ devices and our OPQ cloud service. Our
OPQ simulator also makes use of our OPQ communication protocol. Our protocol utilizes a fixed length
header with a variable sized payload. The layout of the protocol is described below.

3.5.1 Magic Word Header

The magic word header is simply 4 bytes which signify the start of an OPQ data packet. The four bytes will
always be OxOOCOFFEE.

13

Table 4: Protocol Layout

Description Size (bytes) | Start Byte | End Byte
Magic Word Header 4 0 3
Type 4 4 7
Sequence Number 4 8 11
Device Id 8 12 19
Timestamp 8 20 27
Bitfield 4 28 31
Payload Size 4 32 35
Reserved 16 36 51
Checksum 4 52 55
Payload Variable 56 56 +P

3.5.2 Type
The type field specifies the type of OPQ packet being sent. The types and their values are specified below.

Table 5: Packet Types

Type Value Description
Measurement 0 Frequency and voltage measurement.
Frequency Event 1 This packet contains frequency PE data.
Voltage Event 2 This packet contains voltage PE data.
Device Event 3 This packet contains device event data.
Ping 4 | Establishes connection with OPQ cloud (no payload).

3.5.3 Sequence Number

The sequence number is a 4 byte field which maintains the ordering of packets in multi-packet transmissions.
This way, if packets are received out-of-order, they can be reassembled in the correct order.

3.5.4 Devive Id

This field represents a positive 64-bit integer which uniquely identifies each OPQ hardware device.

3.5.5 Timestamp

This field is a 64-bit integer which represents the number of milliseconds since the epoch of when this packet
was sent.

14

3.5.6 Bitfield

This is a 4-byte bitmask where each bit represents one of 32 options depending on the type of packet. This
is currently not being used, but it’s use is planned for future expansion.

3.5.7 Payload Size

A 32-bit integer which stores the size of the payload for each packet.

3.5.8 Reserved

These 16-bytes are reserved for later use.

3.5.9 Checksum

The checksum of each packet is a 4-byte field that is computed by summing every field in the packet except
for the checksum field itself. In other words, the checksum C' is computed as C' = sum(all bytes) —
sum(bytes[52 — 55]).

3.5.10 Payload

The payload is a variable length field which contains different data depending on the type of packet being
sent. The three types of payloads are described below.

If the packet is a measurement type, the payload is 16 bytes where the first 8 bytes represent an IEEE
754 floating point number of the frequency and the last 8 bytes represent an IEEE 754 floating point number
of the voltage.

If the packet is a frequency event type, the payload is 16 bytes where the first 8 bytes represent an IEEE
754 floating point number of the frequency and the last 8 bytes represent the duration of the event as a 64-bit
long integer. The duration represents the number of milliseconds since the epoch.

If the packet is a voltage event type, the payload is 16 bytes where the first 8 bytes represent an IEEE
754 floating point number of the voltage and the last 8 bytes represent the duration of the event as a 64-bit
long integer. The duration represents the number of milliseconds since the epoch.

If the packet type is a ping packet, the payload remains empty.

3.6 Reference Implementation of Protocol

A fully tested reference implementation of our protocol has been written as a standard Java library. We’re
currently using this implementation of the protocol is both our OPQ simulator and our OPQ cloud service.

The reference implementation provides many utilities which aid in the construction of OPQ packets. For
example we provide convenient getters and setters that accept decimal inputs for frequency, voltage, device
id, event duration, timestamp, etc.

The setters convert the decimal values into the appropriate array of bytes and stores them at the correct
location in the protocol. The setters also make sure that the payload section of the protocol is structured
correctly.

The getters select the correct subarray of bytes from the protocol and converts them into a readable
decimal value.

15

The library itself is resilient against inadvertently creating invalid packets. The library contains a wide
range of custom exceptions which are thrown when an OPQ packet is put into an invalid state.

3.7 OPQ Simulator

We designed an OPQ hardware simulator so that we could try out new ideas without needing to deploy actual
hardware right away. Our OPQ simulator can act as a proxy for a real OPQ hardware device or as a proxy
for many OPQ devices. Utilizing our reference implementation of the OPQ protocol, the OPQ simulator
simulates actual OPQ data packets.

We provide a GUI designed using the JavaFX framework which allows for fined grained control over
sending a single OPQ packet, or for the implementation of various distributed simulations.

3.7.1 Single Packet Simulation

When testing our OPQ Cloud service, we found that we needed the ability to send single OPQ packets to

the cloud service where we could control all details of the packet being sent. We provide an interface that

makes it easy to construct a single OPQ packet and then send it to cloud service for evaluation. We also

provide the functionality to alter your values in both decimal and hexadecimal notations at the same time.
Users of the simulator can alter the fields described in table 6.

Table 6: Single Packet Simulation Fields

Field Details
Websocket URL URL of cloud service.
Device Id The simulated OPQ hardware device id.
Type One of the available OPQ packet types.
Sequence Number | Sequence number for simulated multi-packet data.
Timestamp The number of milliseconds since the epoch.
Bitfield Bitfield options for the simulated packet.
Frequency The frequency of the simulated packet.
Voltage The voltage of the simulated packet.
Alert Duration The duration of the simulated event.

The GUI makes it difficult to create invalid OPQ packets. For example, when the type of packet is “Event
Frequency”, the fields for modifying the voltage become uneditable and set to 0. If the type of packet is
“Event Voltage”, the frequency fields become uneditable. When the type of packet is “Measurement”, then
the duration field is made uneditable. If the type of packet is “Ping”, then only the device id and timestamp
fields remain editable. An example of the single packet simulation can be seen in figure 17.

3.7.2 Distributed Simulations

Our OPQ simulator also provides a simulation for performing single-source, large-data testing on our OPQ
cloud service. The simulation allows for a variable number of devices which continually send measurements
and generate PQ events a definable percentage of the time. For a more accurate simulation, a thread is
generated for each device, so that their packet timing is independent of other devices.

16

A description of the editable fields are provided in table 7.

Table 7: Distributed Simulation Fields

Field Details
Websocket URL URL of cloud service.
Device Ids List of OPQ device ids to send packets from.
Packet Types Any available OPQ packet types (except ping).
Packets/second | The number of packets each device sends per second.
Event Frequency Percentage between [0.0 - 1.0].

Note that the “Event Frequency” field determines how frequency a PQ event should be generated by
each device. A value of .5 would say that each device should generate a PQ event 50% of the time, whereas
a value of .1 says that each device should only generate PQ events 10% of the time. An example of this
simulation can be seen in figure 18.

4 Evaluation and Results

4.1 Using the OPQ Simulator

We used the OPQ simulator to send simulated measurements and PQ events to the OPQ cloud service.
We tested that the measurements and events received by the cloud service were the same ones sent by the
simulator. We did this for multiple users and multiple simulated devices.

Users that were set up to receive SMS and/or email alerts received those alerts when PQ events were
generated by the simulator. Users who opted to share their PQ data also received alerts that were generated
within their neighborhood.

4.2 Performance and Scalability

Our hosting provider Cloudbees provides a service called New Relic which provides application perfor-
mance management. In other words, New Relic is an online service attached to Cloudbees which can
perform profiling on our OPQ cloud service. We found the following metrics for our cloud based service to
be the most telling at our current stage of the project.

4.2.1 Response Time

There are three categories for response times that developers need to concern themselves with. Less than
0.1 seconds feels instantaneous to users. Less than 1.0 second is the limit for a user’s flow of thought to go
uninterrupted, and less than 10 seconds keeps the user’s attention [7].

In order to calculate response time, we navigated all sections of our cloud service under normal simulated
load from OPQ devices.

Our software when selecting a link and seeing an updated page has an average response time of 289
milliseconds with the largest response time being just under 750 milliseconds. Our response time falls just
between the two categories of instantaneous and keeping the user’s train of thought. As long as our response

17

times remain less than a second, then no large architectural changes need to made to accommodate faster
response times.

The 750 millisecond response time is generated when loading the page that describes PQ events. The
reason for the high response time is due to database calls which access all power events associated with
all devices for the particular user. Even though the events page causes the highest response time, since the
response time is less than a second, we’re currently not concerned with it. Further analysis on the database
response time is discussed in the next section, database profiling.

The response time for both our web service and for our database are described in figure 5.

& openpowerguality/demo _[¢ Database 1.61 ms‘

0.84 [0.5] <1 <1

Figure 5: Web Service and DB Response Times.

4.2.2 Database Profiling

We stress tested our Cloudbees database using our OPQ simulator with a simulation of 20 OPQ devices each
sending either measurements or PQ events five times a second. In other words, our webservice and database
was responding to and storing 100 OPQ packets per second. We chose this for our initial stress testing as
it’s our aim for our initial pilot deployment of devices.

We found that stress testing the database with the above parameters would use about 5 megabytes of data
in half an hour. Extrapolating this data, our service will consume about 240 megabytes a day, 1.7 gigabytes
a week, and 6.7 gigabytes per month. This number can be greatly reduced if we only send occasional
measurements and PQ events when they occur instead of multiple measurements per device per second.

When profiling the database we can provide several metrics.

The top five most time consuming database operations are outlined in table 8.

Even though querying OPQ devices takes up the largest amount of time in the database, the average
response time is still less than 0.1 seconds which is well within the responsive zone that we’re aiming for.

18

Table 8: Database Profiling

DB Field Operation | Total % of Time | Avg. Response Time (ms)
OPQ Device Select 52.4 2.41
Person Select 19.9 3.82
Event Select 194 8.18
Measurement Select 7.16 3.78
OPQ Device Insert 0.66 1.4

5 Future Work

5.1 External Causes

Users have the ability to tag PQ events with external causes if the user knows what caused the PQ event.
Currently, users can tag events for their own records, but this feature could lead us to some interesting
analytics.

We hope utilize this feature with possibilities of crowdsourcing common tags to diagnose an entire
neighborhood containing PQ events. One example would be if there is a bad storm and the PQ fluctuates in
the area under that storm. Users could tag their PQ events as related to the storm, and we could basically
track the path of the storm by following the tags.

Eventually, we would like to employ machine learning to infer information from user defined tags. If a
user sees that they have a power event every time their refrigerator turns on, they can tag the event with their
refrigerator model and machine learning can learn to associate that PQ signature with the turning on of that
particular compressor. With that learned fact, we can filter and identify these signatures in all homes. In this
way, we could classify PQ event signatures with the help of crowdsourcing.

Once we’re able to classify power events through machine learning, we can provide recommendations
to users on how they can mitigate their PQ issues that we diagnosed. If we can determine what constitutes
as sustained PQ issues, we might be able to recommend when to call the utilities, or when they might benefit
from installing power conditioning equipment, or perhaps we can alert users to unplug their electronics if
we can forecast poor PQ.

5.2 Public PQ Monitoring

We currently only support a rudimentary map interface for displaying public PQ events. If a PQ event
occurs, the grid square that it’s located in and all parent grid squares will change to a red coloring.

We would like to add the ability to reflect how many power events have happened within in area but
using multiple colors indicating the density of PQ events in a particular area.

We would also like to perform aging on PQ events so that only the most recent (being user defined)
events would show up on the public map.

Finally, we would like to provide an animated map interface that would should cascading PQ events.
The inspiration behind this is similar to weather maps which can show the animated path of a storm, we
would like to show an animated path of PQ events.

19

5.3 Security and Privacy

The Play framework provides built-in support for SSL encryption. We are currently not encrypting our
traffic, but as soon as it can be implemented in hardware and implemented in the OPQ simulator, we can
enable SSL on the cloud service as well.

We believe that our grid-map approach is a step in the right direction to protecting user privacy, but we
also see the need for a privacy study which will determine the amount of information that can be obtained
from our OPQ project and our OPQ data. We need to determine if there are problems with our approach in
terms of privacy, and if so, how can we address them?

5.4 Usability Testing

Our software has not undergone any usability testing. We need to perform usability testing and make changes
based on those tests. We hope to begin basic usability testing as soon as we start our pilot program once
we’re ready to deploy our OPQ hardware devices.

5.5 Other Event Types

We are currently only monitoring voltage and frequency. We believe that our hardware is capable of mon-
itoring other useful PQ metrics as well. One area that we plan on focusing on in the near future is the
measuring of harmonics through total harmonic distortion (THD). We would like to study the affects of
renewable power sources on the grid and how they contribute to adding harmonics on top of the power on
the grid.

5.6 Integration with Other Sources

We would like to integrate our PQ data with power generation and consumption data by gaining access to
the users utility account information.

We would also be interested in partnering with utilities and solar distribution companies to gain access
to the PQ data.

5.7 Data Analytics

Finally, we believe that there is a myriad of data analytics that can be performed using the crowdsourced PQ
data. We need to investigate the types of analytics that are possible, and then implement them. Examples
of analytics that we are interested in include average neighborhood PQ, correlation of PQ with weather
systems, and PQ prediction and forecasting.

6 Conclusion

We designed a framework of software technologies that allow for the aggregation of crowd sourced dis-
tributed PQ data. We created a cloud based service for aggregating and displaying PQ information. We
created a communications protocol that we hope can become an open standard for smart meter devices. We
created a grid interface that allows users to share PQ data while still remaining anonymous. We created
a hardware device simulator which can be used as an analogue to a real OPQ hardware device for testing
purposes. Most importantly, we laid out a solid foundation for further research.

20

A Appendix: Software Used

Our application stack uses a variety of technologies and libraries in order to provide a cohesive environment
for aggregating distributed power quality data. Our software is developed using Java, Scala, Javascript, and
markup languages for display (CSS, HTML). We make heavy use of asynchronous communication by using
the WebSocket protocol and use Twitter Bootstrap to provide a consistent and reactive user interface.

A.1 Development Environment

The OPQ Cloud software was developed on Debian GNU/Linux using version 7 of the OpenJDK. The
software is shared under version 3 of the GPL license and all sources are shared on Github.

A.2 Cloudbees

Our OPQ Cloud application is hosted on Cloudbees which provides a platform as a service (PaaS) for
building, running, and managing web applications. Cloudbees provides a continuous deployment envi-
ronment which allows us to push changes to Github and Cloudbees will automatically build, run static
analysis on the software, and deploy the software to the cloud. The Cloudbees web service can be found at
<http://www.cloudbees.com/>.

A.3 Play Framework

The Play Framework is a modern open source model, view, controller (MVC) framework which allows
developers to write web applications in either Java or Scala. The Play Framework provides facilities for
asynchronous communication between clients using the built-in WebSocket standard. The Play Framework
can be obtained at <http://www.playframework.com/>.

A.4 Ebean ORM

The Ebean object-relational mapping (ORM) is provided by the play framework and allows us to easily
persist Plain Old Java Objects (POJOs) to the database of our choosing. Specifically, we are using MySQL
as our database back end. Information about Ebean can be found at <http://www.avaje.org/>.

A.5 Twitter Bootstrap

Twitter Bootstrap is a library which consists of pre-rolled CSS, HTML, and Javascript templates for rapidly
creating reactive and consistent user interfaces. Bootstrap allows us to create an interface that is consistent
across multiple devices from desktops, to laptops, tablets, and mobile phones. Bootstrap can be downloaded
at <http://getbootstrap.com/>.

A.6 Fuel UX

Fuel UX is a set of extensions built on top of Bootstrap that add extra functionality to Bootstrap driven
websites. We're specifically using Fuel UX for the sign-up wizard in our OPQ cloud service. Fuel UX can
be found at <http://exacttarget.github.io/fuelux/>.

21

<http://www.cloudbees.com/>
<http://www.playframework.com/>
<http://www.avaje.org/>
<http://getbootstrap.com/>
<http://exacttarget.github.io/fuelux/>

A.7 Leaflet

Leaflet is an open source, mobile ready, Javascript library for creating interactive maps. We use Leaflet to
display distributed PEs as well as for allowing users to select the location of their device as well as to allow
users to select their neighborhood. We built an anonymous grid layer on top of Leaflet so that consumers
can feel comfortable sharing their PQ data. Leaflet can be obtained at <http://leafletjs.com/>.

A.8 OpenStreetMap

OpenStreetMap provides a mapping service similar to Google Maps, but uses crowd sourced information to
generate their maps and releases their map tiling images as open data. OPQ makes use of OpenStreetMap
by using their tiling API within the Leaflet library. More information about OpenStreetMap can be found at
<http://www.openstreetmap.org/about>.

A.9 Java Websocket

Java Websocket is an open source library which provides access to the Websocket Standard. This library is
used by our OPQ Simulator to act as a client device. This library was not needed in the OPQ Cloud software
as the Play framework handles all WebSocket communications for us. Java Websocket can be found at
<http://java-websocket.org/>.

A.10 JavaFX

JavaFX is a graphical user interface (GUI) framework which provides tools from developing GUIs seam-
lessly across multiple different platforms and architectures. JavaFX makes integration with web technolo-
gies such as CSS and embedded HTML easy. We use JavaFX as the GUI back end to our OPQ simula-
tor. JavaFX can be obtained at <http://www.oracle.com/technetwork/java/javafx/overview/
index.html>.

A.11 Static Analysis

We use a variety of static analysis tools to spot bugs in our source code. JUnit <http://junit.org/>
is used as a unit testing framework for our software. FluentLenium <http://fluentlenium.org/> is
used for writing acceptance tests for our software. We use FindBugs <http://findbugs.sourceforge.
net /> to perform further static analysis and to enforce coding standards. Finally, we use Emma <http:
//emma.sourceforge.net/> to perform unit test coverage over our source code base.

22

<http://leafletjs.com/>
<http://www.openstreetmap.org/about>
<http://java-websocket.org/>
<http://www.oracle.com/technetwork/java/javafx/overview/index.html>
<http://www.oracle.com/technetwork/java/javafx/overview/index.html>
<http://junit.org/>
<http://fluentlenium.org/>
<http://findbugs.sourceforge.net/>
<http://findbugs.sourceforge.net/>
<http://emma.sourceforge.net/>
<http://emma.sourceforge.net/>

B Appendix: Screenshots

Open Power Quality

@& Information
First Name
Last Name
E-Mail
Password

State

Getting Started Public Power Quality Monitoring

€ Optional Information
John

Doe

john.doe@email.com

Hawail

@& Device
Required
Required

Required

Required

@ Alers

23

@ Notifications

Figure 6: OPQ Wizard Screenshot.

@ Data Sharing 4= Prev Nex =

Welcome to the OPQ Wizard

This wizard will walk you through the
steps needed to create an account and
also register your OPQ device. You can
go back to any step at any time and all
of this information can be updated in
the future from the administration
panel.

User Information

This information is required to create
an account on openpowerqguality.org.

All fields are required.

Open Power Quality Getting Started Public Power Quality Monitoring

@& Information @& Optional Information & Device @ Aleris @ Noiifications @ Data Sharing 4= Prev Next =

City | Hoolehua Optional User Information

This information is only used for
ip 96729 research purposes in order to locate
where users are in relation to their
OPQ devices. Feel free to include as
little or as much information as you feel
comfortable with.

™

Street Name Kolea Ave

Street Number 123
All fields are optional.

Figure 7: OPQ Wizard Screenshot.

24

Open Power Quality

@& Information
Device Id
Device Description

State

Getting Started Public Power Quality Monitoring

@& Optional Information & Device
23456 Required
Mauka Workshop Required
Hawail

@ Aleris

@ Noiifications

Figure 8: OPQ Wizard Screenshot.

25

@ Data Sharing 4 Prev Net =

‘OPQ Device

This section allows you to register your
OPQ device.

Device Id

The OPQ device id can be found on a
sticker attached to your OPQ device.
The id is represented by 16
hexadecimal digits split into groups of 4
digits.

Example: 0123-4567-89AB-CDEF
Device Description

Provide a short description of your
device. This makes it easy to
differentiate between multiple devices
your control without having to
memorize their device id.

Examples: Offices, basement, uptown,
efc

Open Power Quality

@& Information
Voltage Alert
Minimum Voltage

Maximum Voltage

Frequency Alert
Minimum Frequency

Maximum Frequency

Device Alert

Getting Started Public Power Quality Monitoring

@& Optional Information & Device @ Aleris
I
100.0

130.0

Q)

58.0

61.0

Figure 9: OPQ Wizard Screenshot.

26

@ Data Sharing 4 Prev Net =

Alerts

This section allows you to configure
when your device should generate an
alert based on the current voltage and
frequency readings.

Voltage Alert

To create a voltage alert, make sure
that the "Voltage Alert" checkbox is
selected. Then supply the minimum
and maximum voltage range for which
voltages should trigger an event. If the
voltage is ever below the minimum of
above the maximum range, then an
alert will be triggered.

Frequency Alert

To create a frequency alert, make sure
that the "Frequency Alert" checkbox is
selected. Then supply the minimum
and maximum frequency range for
which frequencies should not trigger an
event. If the frequency is ever below
the minimum or above the maximum
range, then an alert will be triggered.

Device Alert

Device alerts are triggered when there
is an issue with the OPQ hardware
device itself. If you want the device to
be able to trigger alerts, make sure the
"Device Alert" checkbox is selected.

Open Power Quality

& Information
E-Mail Alert

Alert Address

SMS Alert
SMS Carrier

SMS Number

Getting Started Public Power Quality Monitoring

@& Optional Information @ Device @ Alerts

&4

john.doe@email.com

[
Sprint |

8085551234

Figure 10: OPQ Wizard Screenshot.

27

@ Data Sharing Prev Nexd =

Alert Notifications

This section allows you to create
notifications for alerts triggered in the
previous section. Notifications come in
the form of SMS alerts, e-mail alerts, or
both.

E-Mail Alert

To enable e-mail alerts, make sure the
"E-Mail Alert" checkbox Is selected.
Then supply an e-mail address that the
alert should be sent to.

SMS Alert

To enable SMS alerts, make sure the
"SMS Alert" checkbox is selected. Then
select the carrier that your SMS phone
is under. Finally, provide your SMS
number.

Examples: Offices, basement, uptown,
elc

[Open Power Quality Getting Started Public Power Quality Monitoring

{ Information @& Optional Information Device Alerts Notifications Data Sharing 4 Prev Finish =

Data Sharing &

Data Sharing

It's possible to anonymously share your
power quality data.

To share your data, first check the box
beside "Data Sharing”. Then click the
grid square at the zoom level that
you're both comfortable with and where
your OPQ device resides.

Figure 11: OPQ Wizard Screenshot.

28

Open Power Quality Home Administration Private Power Quality Monitoring Public Power Quality Monitoring

Private Events Filter Measurements

Nearby Events After past Day j

Private Measurements e

This page allows you to manage and

Ctaataipawardualiyietanie: Device Id Description Timestamp Frequency (Hz) Voltage (V)
23456 Mauka Workshop 15:57:31.967 [05 Mar 2014] 60.0 120.0
23456 Mauka Workshop 15:57:27.247 [05 Mar 2014] 60.3 120.0
23456 Mauka Workshop 15:57:21.573 [05 Mar 2014] 60.0 120.0
23456 Mauka Workshop 15:57:19.733 [05 Mar 2014] 60.0 120.0
23456 Mauka Workshop 15:57:18.337 [05 Mar 2014] 60.0 120.0
234586 Mauka Workshop 15:57:17.005 [05 Mar 2014] 60.0 120.0
23456 Mauka Workshop 15:57:15.737 [05 Mar 2014] 60.0 120.0
23456 Mauka Workshop 15:57:14.301 [05 Mar 2014] 60.0 120.0
23456 Mauka Workshop 15:57:12.147 [05 Mar 2014] 60.0 120.0
23456 Mauka Workshop 15:57:10.007 [05 Mar 2014] 60.0 120.0

[113]

Figure 12: Private PQ Measurements.

29

Open Power Ouali‘[y Home Administration Private Power Quality Monitoring Public Power Quality Monitoring

Nearby Events After past| Day j
Private Measurements
Filter

This page allows you to manage and
create power quality events.

Device Duration Event
Id Description Event Type Timestamp (ms) Value External Cause Details
23456 Mauka Frequency 16:01:21.437 [05 Mar 112 67.0 Hz Tropical Storm
‘Workshop Event 2014] Flossie
1404 Office Voltage Event 16:00:57.755 [05 Mar 12 130.0 Volts
2014]
1403 Lab #4 Frequency 16:00:45.483 [05 Mar 5 55.0 Hz Man Made
Event 2014]
1402 Lab #3 Frequency 16:00:40.917 [05 Mar 5 55.0 Hz
Event 2014]
23456 Mauka Voltage Event 16:00:22.708 [05 Mar 5 130.0 Volts
‘Workshop 2014]
23456 Mauka Voltage Event 15:59:53.688 [05 Mar 70 132.5 Volts
‘Workshop 2014]
1404 Office Voltage Event 15:58:28.741 [05 Mar 22 111.32
2014] Volts
1404 Office Voltage Event 15:58:24.779 [05 Mar 22 111.32
2014] Volts
1403 Lab #4 Frequency 15:58:06.145 [05 Mar 50 55.0 Hz
Event 2014]
1404 Office Frequency 15:56:29.485 [05 Mar 50 64.0 Hz
Event 2014]

Figure 13: Private PQ Events.

30

Open Power Quality Home Administration Private Power Quality Monitoring Public Power Quality Monitoring

Private Events Filter Events

Nearby Events After past Day j
Private Measurements P —

This page shows nearby events.

Distance Event Type Timestamp Duration {ms) Event Value External Cause
<4.0Km Voltage Event 16:00:57.755 [05 Mar 2014] 112 130.0 Volts

<0.25 Km Frequency Event 16:00:45.483 [05 Mar 2014] 5 55.0 Hz Man Made
<2.0Km Frequency Event 16:00:40.917 [05 Mar 2014] 5 55.0 Hz

<4.0Km Voltage Event 15:58:28.741 [05 Mar 2014] 22 111.32 Volts

<4.0Km Voltage Event 15:58:24.779 [05 Mar 2014] 22 111.32 Volts

<0.25 Km Frequency Event 15:58:06.145 [05 Mar 2014] 50 55.0 Hz

<4.0Km Frequency Event 15:56:29.485 [05 Mar 2014] 50 64.0 Hz

<2.0Km Frequency Event 15:56:12.605 [05 Mar 2014] 100 55.0 Hz

<2.0Km Voltage Event 16:55:55.213 [05 Mar 2014] 115 109.0 Volts

(11

Figure 14: Nearby PQ Events.

31

Open Power Quality ~ Home

User Administration
Device Administration

Alert Admi

ration

Data Administration

This page allows you to manage and
create power guality events.

Administration

Private Power Quality Monitoring Public Power Quality Monitoring

Device Id Frequency Alerts Voltage Alerts Device Alerts Alert Via Email
23456 Yes Yes Yes Yes
1402 No No No No

Alert Vis Sms

Yes

No

Get a summary of your alerts.

Figure 15: Alert Administration.

32

Open Power Quality Home = Administration

User Administration

Device Administration

Alert Administration

Data Administration

This page allows you to add and
configure devices.

Private Power Quality Monitoring Public Power Quality Monitoring

Device Id Description
23456 Mauka Workshop
1402 Lab #3 Add Devic

Easily add new devices

Figure 16: Device Administration.

33

Register new OPQ
device

The device IDis a
squence of 16
characters and letters
that should have been
supplied with your OPQ
device.

Registered OPQ
Devices

This lists the devices that
are currently registered
to your account.

File Edit Help

Send Packet

opqg-sim

CLTEE

Websocket URL:

Device Id:

Type:

Sequence Number:

Timestamp:

Bitfield:
Frequency (Hz):
Woltage (Volts):

Alert Duration:

ws:/fdemo.openpowerquality.cloudbees.net/private/ws

Integer View
12345
: =
22

1394667358261

45
72
0.0

100

Byte View

3039

17

144b8a70835

2d

0x1.2p6

64

Figure 17: OPQ Simulator Single Packet

34

File Edit

Stress Test

| Simulation

Websocket Address:

Device Ids:

Add Device Id:

Packet Types:

Packets/second:

Event Frequency:

opqg-sim IS X\

ws://demo.openpowerquality.cloudbees.net/private/ws

Mmoo B W

|| Measurement
|| Event Frequency
|| Event Voltage

|| Event Device

2

.05

Figure 18: OPQ Simulator Stress Test Simulation

35

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

Hawaii Renewable Electricity Mandate Status. <http://www.instituteforenergyresearch.
org/renewable-mandates/hawaii-renewable-electricity-mandate-status/>.

Office of Electricity Delivery & Energy Reliability F.A.Q. web site. <http://energy.gov/oe/

information-center/educational-resources/electricity—-101>.

Star Advertiser: PV installations up 39% in 2013 across HECO’s service area. <http:
//www.staradvertiser.com/news/breaking/20140122_PV_installations_up_39_
in_2013_across_HECOs_service_area.html>.

West Hawaii Today: Solar panel installations push electric utilities
to the brink. <http://westhawaiitoday.com/news/local-news/

solar-panel-installations—-push-electric-utilities-brink>.

A Atputharajah, V K Ramachandaramurthy, and J Pasupuleti. Power quality problems and solutions.
IOP Conference Series: Earth and Environmental Science, 16(1):012153, 2013.

Masoud Farhoodnea, Azah Mohamed, Hussain Shareef, and Hadi Zayandehroodi. Power quality im-
pacts of high-penetration electric vehicle stations and renewable energy-based generators on power
distribution systems. Measurement, 46(8):2423 — 2434, 2013.

Fiona Fui-Hoon Nah. A study on tolerable waiting time: how long are web users willing to wait?
Behaviour & Information Technology, 23(3):153-163, 2004.

Mohibullah S. H. Laskar. Power quality issues and need of intelligent pq monitoring in the smart grid
environment. International Journal of Emerging Technology and Advanced Engineering, 2(9), 2012.

36

<http://www.instituteforenergyresearch.org/renewable-mandates/hawaii-renewable-electricity-mandate-status/>
<http://www.instituteforenergyresearch.org/renewable-mandates/hawaii-renewable-electricity-mandate-status/>
<http://energy.gov/oe/information-center/educational-resources/electricity-101>
<http://energy.gov/oe/information-center/educational-resources/electricity-101>
<http://www.staradvertiser.com/news/breaking/20140122_PV_installations_up_39_in_2013_across_HECOs_service_area.html>
<http://www.staradvertiser.com/news/breaking/20140122_PV_installations_up_39_in_2013_across_HECOs_service_area.html>
<http://www.staradvertiser.com/news/breaking/20140122_PV_installations_up_39_in_2013_across_HECOs_service_area.html>
<http://westhawaiitoday.com/news/local-news/solar-panel-installations-push-electric-utilities-brink>
<http://westhawaiitoday.com/news/local-news/solar-panel-installations-push-electric-utilities-brink>

	Introduction and Motivation
	A Software and Hardware Diagnostic Framework
	Software Implementation
	Obtaining the Software
	Grid Map
	Generating the Polygon Points
	Dynamic Sizing of Grid
	Grid Square Naming
	Importance to OPQ

	OPQ Cloud Features
	Sign-Up
	PQ Measurements
	PQ Events
	Data Sharing
	Nearby PQ Events
	Device Administration

	OPQ Cloud Infrastructure
	Database Design
	Asynchronous 2-Way Communication

	OPQ Protocol
	Magic Word Header
	Type
	Sequence Number
	Devive Id
	Timestamp
	Bitfield
	Payload Size
	Reserved
	Checksum
	Payload

	Reference Implementation of Protocol
	OPQ Simulator
	Single Packet Simulation
	Distributed Simulations

	Evaluation and Results
	Using the OPQ Simulator
	Performance and Scalability
	Response Time
	Database Profiling

	Future Work
	External Causes
	Public PQ Monitoring
	Security and Privacy
	Usability Testing
	Other Event Types
	Integration with Other Sources
	Data Analytics

	Conclusion
	Appendix: Software Used
	Development Environment
	Cloudbees
	Play Framework
	Ebean ORM
	Twitter Bootstrap
	Fuel UX
	Leaflet
	OpenStreetMap
	Java Websocket
	JavaFX
	Static Analysis

	Appendix: Screenshots

