
0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 97

VOICE OF EVIDENCE
Editor: Rafael Prikladnicki
Pontif ica Universidade Catolica
do Rio Grande do Sul
rafael.prikladnicki@pucrs.br

Is an Athletic Approach
the Future of Software
Engineering Education?
Emily Hill, Philip M. Johnson, and Daniel Port

IN THE PAST 10 YEARS, there has been
considerable evidence of the harmful ef-
fects of multitasking and other distrac-
tions on learning. One study found that
multitasking students spend only 65 per-
cent of their time actively learning, take
longer to complete assignments, make
more mistakes, are less able to remember
material later, and show less ability to
generalize the information they learned
for use in other contexts.1

Traditional software engineering edu-
cation approaches—in-class lectures, un-
supervised homework assignments, and
occasional projects—create many op-
portunities for distraction.

To address this problem, coauthor
Philip M. Johnson developed an “ath-
letic” software engineering education
approach, which coauthors Emily Hill
and Daniel Port adapted for use in their
courses. We wanted to determine if soft-
ware engineering education could be re-
designed to be like an athletic endeavor
and whether this would improve learning.

Athletic Software Engineering
We wanted to design the educational
process to incentivize students to avoid
multitasking and focus on learning com-
plex, multistep tasks.

Athletic software engineering educa-
tion adopts simple features of conven-
tional athletic training. The primary

goal is to minimize the time students
need to accomplish a task. Many sports,
such as running and cycling, are based
on completing a task in a minimal
amount of time. Another goal is to en-
courage a high-quality effort, which
leads to better results.

Generally, neither feature is found in
the software engineering classroom. As-
signments usually eliminate time con-
straints. For example, if instructors be-
lieve a problem could be completed in a
day, they might provide a week, thereby
preventing students from claiming that
they didn’t have enough time to fi nish.
Also, in software engineering, working
quickly is typically viewed as working
sloppily. This contrasts with athletic en-
deavors, in which sloppiness often pro-
duces slowness.

Athletic software engineering educa-
tion resolves this dichotomy by differen-
tiating between the creative aspects—for
which minimum times can’t be de-
fi ned—and the mechanics—for which
they can—of each skill to be taught.

Let’s use writing a unit test as a sim-
ple example. In a lecture-based survey
course, students might read a chapter
about unit testing and learn how to com-
pare and contrast it with integration test-
ing, load testing, and other kinds of test-
ing. The instructor might require students
to express this conceptual knowledge via

VOICE OF EVIDENCE

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

VOICE OF EVIDENCE

98 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Students agreed that the athletic
software engineering education
approach kept them focused.

a written exam. In a project- based
practicum, students might have to
develop unit tests for an application.
Different groups might develop their
tests at different times and with dif-
ferent technologies. In a fl ipped class-
room, students might learn about
unit testing at home via videos and

develop unit tests in class under the
instructor’s guidance.

In the athletic approach, unit-
test writing combines creative de-
cisions (deciding what to test and
why) and mechanics (performing the
tasks necessary to yield high-quality
software).

The mechanics of developing
even a simple unit test involve mul-
tiple languages, tools, and technol-
ogies. Students can be incapable of
developing unit tests or take a lot of
time to do so not because of their
creative decisions but because they
haven’t mastered the mechanics.
The good news is that by integrat-
ing athletic concepts into the cur-
riculum, students can master these
mechanics without experiencing
distractions.

In a nutshell, athletic software en-
gineering education involves

• structuring the curriculum as a
sequence of skills to master, not
concepts to memorize;

• creating a set of training prob-
lems for each skill, accompanied
by a video demonstrating how to

solve them in a minimal amount
of time;

• providing the opportunity to
learn to solve the problems in
the prescribed amount of time;

• testing mastery of a skill through
an in-class, timed problem, simi-
lar to physical training’s work-

out of the day (WOD); and
• acquiring the next skill, typically

by employing many of the tools
and technologies previously
learned.

 The website for Johnson’s Spring
2015 advanced software engineer-
ing class at the University of Hawaii
at Manoa (http://philipmjohnson
:github:io/ics613s15) provides a
complete example of applying ath-
letic software engineering to a vari-
ety of skills.

This approach requires students
to demonstrate mastery of various
software engineering skill sets’ me-
chanics via assessments that they
must complete correctly within a
time limit. This reduces distraction,
improves focus, and makes learning
more effi cient.

Evidence
The athletic approach has been eval-
uated in two software engineering
courses by Johnson, adapted to a
business-school curriculum by Port,
and adapted to an elementary pro-
gramming class by Hill.

Athletic Education
in Software Engineering
Johnson used an athletic style to
teach software engineering to an
undergraduate software engineer-
ing class in 2014 and a graduate
software engineering class in 2015.
The two had a total of 29 students.
To assess the approach, he required
students to write technical essays
on their progress and administered
a questionnaire near the semester’s
end that obtained their opinions.

Of the students surveyed, all
but one (97 percent) preferred
the athletic course structure to
the traditional one. A participant
commented,

I would choose to do [academic]
WODs over the traditional ap-
proach because it helps you to be-
come accustomed to working under
pressure. I fi nd myself learning
more this way due to having to re-
member what I’ve done rather than
searching for how to do something
and then forgetting soon after.

Athletic software engineering lets
students repeat training problems
if they don’t achieve adequate per-
formance. In our study, 72 percent
of them found it useful to repeat the
problems, and most repeated more
than half of the problems at least once.

Of responding students, 82 per-
cent said athletic software engi-
neering improved their focus while
they learned the material. One
commented,

Like many students, when I do
work at home, I get distracted eas-
ily. … WODs defi nitely helped me
to accomplish more in less time.

Pressure is a part of a software de-
veloper’s life. More than 80 percent

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

VOICE OF EVIDENCE

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 99

of the students said the athletic ap-
proach helped them feel comfortable
programming under pressure.

Athletic Education in Business School
Port adapted the athletic approach
to an introductory Web-application-
programming course for manage-
ment of information systems (MIS)
majors. The challenge was to give
novices basic programming fl uency,
skills and strategies for becoming
effi cient in all software develop-
ment phases, and an understanding
of why and where MIS workers use
these abilities. We wanted to use the
athletic approach to rapidly build
competence and confi dence in devel-
oping software to improve students’
future performance in MIS courses.

Our experience over the past year
indicates the athletic approach was
highly effective in achieving these
goals. Unexpectedly, it also gener-
ated enjoyment and enthusiasm for
building software once the students
achieved competence and confi -
dence. In addition, it fostered both
the determination to make software
work and elation when it did, rather
than fear and sadness when it didn’t.
Port’s students said that the athletic
approach promoted greater collabo-
ration and that they didn’t feel com-
petition but instead wanted to help
one another understand the material
and master the assignments.

Students liked the practice WODs
and learned a great deal by trying
them and then watching a video
of the solution. However, they
didn’t like in-class WODs and were
 frustrated when they repeatedly
didn’t fi nish them. Nevertheless,
they eventually succeeded and de-
cided that WODs were essential for
building programming competence.
Running WODs until students could
fi nish them built confi dence and en-

thusiasm. Upon completion, students
felt ready to take on the challenge of
building full applications with more
complexity and less guidance.

Students who experienced the
athletic approach did better than
those whose classes took a more
traditional approach, and a higher
percentage performed successfully
in subsequent MIS courses that de-
pended on development skills. How-
ever, the athletic approach discour-
aged some students who didn’t do as
well as they expected or who weren’t
as successful as other students.

Athletic Education in
Introductory Programming
Hill adapted the athletic approach
for introductory programming
classes in Python and Java. She as-
signed the in-class, timed problems
as homework if the students didn’t
fi nish. However, to receive an A on
an assignment, they had to correctly
complete it in class.

Students said they liked working
on the practice WODs and learning

from the videos, and sometimes re-
quested more of each to help learn
diffi cult concepts.

Anonymous student survey feed-
back was mixed. In the Python
course, 18 of the 25 students re-
sponded, with two-thirds preferring
the athletic approach over a more
traditional style. Unfortunately, in
the Java course, only fi ve of 24 stu-

dents responded, rendering the re-
sults insignifi cant. Unlike Port’s
students, those in Hill’s Python and
Java classes complained that the
WODs’ competitive nature discour-
aged collaborative learning. For ex-
ample, one said,

[I]t created a hostile environment
where people were afraid to admit
that they didn’t understand course
material outside of class. Also, it
made peers less likely to help each
other or provide advice.

On the other hand, another student
noted that the competition spurred
them to “do additional work using
resources outside of the class.”

Both courses’ students agreed
that the athletic structure kept them
focused and that they really liked the
practice WODs. Said one,

It was less stressful doing [practice
WODs] because I knew that the
homework was not graded. The
homework was there solely to help

me learn, and that absence of nega-
tive pressure allowed me to focus and
concentrate more than I usually do.

B ased upon our initial expe-
riences, we believe an ath-
letic pedagogy will fi nd its

place as a way to help students effi -
ciently master software engineering’s

Traditional software engineering
education approaches create many
opportunities for distraction.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

100 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

VOICE OF EVIDENCE

mechanics and better enable them to
handle the creative problem solving
that our discipline requires. As the
diverse student responses to different
adaptations showed, the approach is
still in its infancy. We will continue
to refine and improve it with addi-
tional experience and invite software
engineering educators who find this
approach of interest to join us.

Reference
1. A. Murphy Paul, “How Does Multi-

tasking Change the Way Kids Learn?”
MindShift, 3 May 2013; http://ww2
.kqed.org/mindshift/2013/05/03/how
-does-multitasking-change-the-way
-kids-learn.

EMILY HILL is an assistant professor of com-
puter science in Drew University’s Department of
Mathematics and Computer Science. Contact her
at emhill@drew.edu.

PHILIP M. JOHNSON is a professor in and
the associate chair of the University of Hawaii
at Manoa’s Department of Information and
Computer Sciences. Contact him at johnson@
hawaii.edu.

DANIEL PORT is an associate professor in
the University of Hawaii at Manoa’s Information
Technology Management Department. Contact
him at dport@hawaii.edu.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 101

REQUIREMENTS
Editor: Philippe Kruchten
University of British Columbia
pbk@ece.ubc.ca

SOUNDING BOARD

Software Is Driving
Software Engineering?
George Hurlburt and Jeffrey Voas

SOFTWARE ENGINEERING is quite
well defi ned. In 2014, the IEEE Com-
puter Society released the third edition of
its comprehensive Guide to the Software
Engineering Body of Knowledge (SWE-
BOK Guide).1 Figure 1 shows part of the
SWEBOK Guide’s conceptual layout. The
boxes show major topics, with subtopics
listed in the descending structures. Each
subtopic is further broken down and sup-
ported by even deeper levels, leading to
the textual treatment of everything.

Despite the SWEBOK Guide’s thor-
oughness and apparent currency, it faces
one fundamental challenge. Software
continues to morph and expand in infl u-
ence with increasing rapidity.

Why must the SWEBOK Guide face
continual change? It turns out we’re liv-
ing in a physical world that’s moving at
the speed of software. This means that
software’s trajectory will drive software
engineering, not vice versa.

A Brief History of Software
Consider the early software achieve-
ments, in which linear mathematics
reigned supreme. Linear ballistic trajec-
tory calculation was considered a trium-
phant achievement in the late ’40s. The
US space program brought ever more
dynamic mathematical navigation prob-
lems to the forefront, literally taking us
to the moon. Relational database man-
agement systems began to overcome ex-
pensive storage constraints and brought
transaction processing to businesses,
thus fueling functional programming by

the ’60s. PC-compatible operating sys-
tems brought computational power to
individuals, incidentally vastly expand-
ing the pool of potential programmers in
the ’80s.

Lately, the Internet has pioneered the
notion of a global network in which ev-
erything can be connected. Now, the
Internet of Anything is rapidly extend-
ing this notion well beyond human net-
works.2 The huge mobile-device market
is further reinforcing and hastening this
network phenomenon. By 1989, the mo-
bile phone packed more computational
power than an Apollo mission computer.

Software has evolved similarly. Once
considered a tool for rapidly and effi -
ciently solving complicated mathemati-
cal problems, software has become a
logical means to relate diverse ideas
across vast networks. In so doing, soft-
ware has migrated from mathematically
precise expression to an environment in
which meaning and data provenance of-
ten matter. It now supports expression
of human abstractions understandable
only in increasingly fuzzy functional
contexts. Software can no longer be
decoupled from the processes or func-
tions it supports. As programming lan-
guages, such as Haskell, become more
abstract, the question of precise mean-
ing becomes increasingly urgent. Ontol-
ogy is already becoming a prerequisite to
disambiguation of semantic variation in
which the relationships between plenti-
ful software nodes are overwhelmingly
many-to-many.3

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

SOUNDING BOARD

102 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Software has transited from
standalone programs performing sin-
gular functions to deeply embedded
control mechanisms in vast system-
of-systems environments. The epit-
ome of such an environment is the
smart grid, in which many key vari-
ables, typically outside the system,
are in constant flux—sometimes
somewhat rhythmic and sometimes
totally asymmetric.

Because software routines are
deeply embedded in systems, they too
become highly interdependent. To-
day, any software interaction suggests
that there are multiple paths, all influ-
enced by sensor input from the exter-
nal environment, to achieve a given
end. Consider an autonomous auto-
mobile informed largely by a con-
stantly learning Bayesian network.
The optimal solution for a given sub-
system at one microsecond might dif-

fer significantly from subsequent so-
lutions in succeeding microseconds.

So, cause-and-effect relationships
relate to paths through multiple soft-
ware modules as influenced by sen-
sor input and feedback, not by any
single program’s direct, discernable
action. This argues against strict de-
terminism, refutes reductionism as
a valid software-testing approach,
and drives any solution to nonlinear
proportions. Indeed, software has
moved standalone routines to adapt
along with complex systems; in so
doing, these routines have become
complex adaptive entities in their
own right. Embedded software’s
nonlinearity further refutes the no-
tion that we can engineer software,
much less test it, in any classically
linear fashion.

As systems of systems become fur-
ther embedded in networks of net-

works, the potential for self-organiz-
ing behavior increases substantially.
Consider a network of autonomous
vehicles on grid-enabled highways.
The realm of nonlinear decision
points and potential paths will grow
to mammoth proportions as the In-
ternet of Anything advances.

What Motivates Software
Engineers?
For future software to be managed
effectively, it would appear that
dynamic software interdependence
reigns supreme. But does this mesh
with the nature of software develop-
ers, who live in the moment?

Monetary Gain
Some people would assert that
money motivates. Software engi-
neers are generally well compen-
sated. According to the US Bureau

Software
engineering

Software
requirements

Software
design

Software
construction

Software
testing

Software
maintenance

Software
configuration
management

Software
engineering

management

Fundamentals

Process

Elicitation

Analysis

Specification

Validation

Practical
considerations
Tools

Fundamentals

Issues

Structures and
architecture
User interface
design
Quality analysis
and evaluation
Notations

Strategies and
methods
Tools

Fundamentals

Management

Practical
considerations
Technologies

Tools

Fundamentals

Test levels

Techniques

Measures

Process

Tools

Fundamentals

Key issues

Process

Techniques

Tools

Process

Configuration
identification
Configuration
control
Status
accounting
Auditing

Release management
and delivery
Tools

Initiation and
scope definition
Project planning

Project
enactment
Review and
evaluation
Closure

Measurement

Tools

FIGURE 1. Part of the conceptual layout of the Guide to the Software Engineering Body of Knowledge (SWEBOK Guide). The boxes
show major topics, with subtopics listed in the descending structures.

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page

q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page
