
An athletic approach to software engineering education

Philip Johnson∗, Dan Port†, Emily Hill‡,
∗Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI USA

†Department of Information and Technology Management, University of Hawaii at Manoa, Honolulu, HI USA
‡Department of Mathematics and Computer Science, Drew University, Madison, NJ, USA

Emails: johnson@hawaii.edu, dport@hawaii.edu, emhill@drew.edu

Abstract—We present our findings after two years of expe-
rience involving three instructors using an “athletic” approach
to software engineering education (AthSE). Co-author Johnson
developed AthSE in 2013 to address issues he experienced
teaching graduate and undergraduate software engineering.
Co-authors Port and Hill subsequently adapted the original
approach to their own software courses. AthSE is a pedagogy
in which the course is organized into a series of skills to be
mastered. For each skill, students are given practice “Work-
outs” along with videos showing the instructor performing the
Workout both correctly and quickly. Unlike traditional home-
work assignments, students are advised to repeat the Workout
not only until they can complete it correctly, but also as quickly
as the instructor. In this experience report we investigate the
following question: how can software engineering education
be redesigned as an athletic endeavor, and will this provide
more efficient and effective learning among students and more
rapidly lead them to greater competency and confidence?

Keywords-software engineering pedagogy, athletic training

I. INTRODUCTION

Over many years of teaching software engineering, we
have implemented innovations such as the flipped classroom,
personal software process, simulated development environ-
ments (games), open source tools and projects, coding con-
tests, and community projects. We hoped our efforts would
move our students’ experience from a dusty, dry subject to
be endured into a course alive with possibilities. Based upon
course evaluations, our prior approaches did appear to make
our courses more interesting and enjoyable.

Yet there was something fundamentally dissatisfying
when none of our students participated in a University
of Hawaii Startup Weekend in 2013. This fast paced en-
trepreneurial workshop was in desperate need of technically
competent developers. Why weren’t our students interested?
One reason stood out - they did not feel competent enough
in their development skills to participate. How could this be?
We just spent an entire semester on software development!
There were other signs that something was amiss. Some of
our students did poorly in subsequent courses that depended
on their development skills. Many of our graduates decided
not to pursue a career in software engineering. Certainly a
career in software development is not for everyone, but we
expect those students who have successfully complete our
curricula to be at least interested in trying it out.

We now believe that our students’ success depends greatly
in their ability to develop competancy, and perhaps as impor-
tantly, a sense of confidence in their software development
skills. Despite having implementing many of the advances
and innovations suggested in the literature, we had not seen
much improvement in these two key areas. Perhaps this is
because our prior approaches did not incentivize students to
internalize the mechanics of software development: skillful
use of the languages, tools, and technologies so that their
attention can focus on the actual experience of software
engineering.

In this paper, we present our initial experiences con-
fronting this educational challenge through an “athletic”
approach to software engineering education (AthSE), which
co-author Johnson developed in 2013, and which has been
adapted by co-authors Port and Hill to their own software
courses. AthSE is a pedagogy in which some or all of the
course is organized into a series of skills to be acquired. For
each skill, students are given “workouts” (practice problems)
along with videos showing the instructor performing each
workout correctly, quickly, with verbal explanations of their
choice of tools and design techniques as they apply them.
Students are advised to repeat the workout until they can
complete it not just correctly, but in approximately the same
time as the instructor.

For example, consider a workout in which the instructor
creates a branch of a git repository, extends a feature, writes
a unit test, commits the change, and merges the branch in
16 minutes. A student might give up on their first attempt
after 40 minutes, then watch the instructor’s video, then
succeed on their second attempt in 30 minutes. On their
third attempt, they succeed in less than 20 minutes, finally
demonstrating the ability to solve the problem correctly and
with approximately the same efficiency as the instructor.

The AthSE pedagogy was inspired by the observation
that athletics, in contrast to traditional software engineering
education, views time as a constrained resource, and well-
trained athletes generally do not suffer from distraction or
lack of confidence during training or competition. Even the
“flow state”[1], revered among programmers as a rarely
achieved kind of software development satori, is common-
place and unexceptional among athletes during competition.
After two years of experience with three different instructors



using AthSE, we have observed a number of intriguing
results, but also a few unexpected challenges:

• A very high percentage (often 100%) of the students in
a class prefer “workouts” to the conventional classroom
style, although they often get initially discouraged if
they are not experiencing success.

• All three instructors who have used this pedagogy
prefer it, although it requires significant work to design
and implement workout videos demonstrating “good
form”.

• Successful students repeat at least some workout as-
signments multiple times. This contrasts with tradi-
tional homework assignments, which are virtually never
repeated.

• Athletic software engineering seems to solve the “mul-
titasking” or “divided attention” problem [2]. While
working on class material, students do not check Face-
book, email, text messaging, etc. They are in the “flow
state”, just as an athlete in a 100 yard dash is in the
“flow state”. The classroom becomes a very active, yet
focused environment.

• Many students leave the class with higher compe-
tence and greater confidence in their development skills
as compared to previously non-AthSE based classes.
Fewer students fail or do poorly in the course.

• Many students become enthusiastic about the curricula,
are willing to participate in extra curricula activities
(e.g. Start Up Weekends), and generally appear to
perform better in subsequent classes that depend on
development skill. Students also appear to develop
greater comradery.

While we have gathered a substantial amount of empirical
data on results and have investigated theoretical under-
pinnings, the aim of this paper is to generate interest in
experimenting with this approach to software engineering
education. All materials and assessments discussed here are
publicly available and the authors enthusiastically support
use and adaptation of them by the software engineering
education community.

II. ATHLETICS AS A PEDAGOGICAL GOAL

We have a confession to make. For over 20 years, we’ve
been teaching “cubicle” software engineering. This does not
mean that we teach students to use punch cards, COBOL,
and the waterfall lifecycle model. To the contrary, our cur-
riculum appears quite modern: agile development processes,
a “flipped” classroom [3], and modern tools and technologies
including GitHub, Heroku, Bootstrap, and the like.

Cubicle software engineering refers to two pedagogical
decisions we have not changed in 20 years:

1) A software development time frame measured in days,
weeks, and months.

2) No explicit focus on the actual speed of coding.

Cubicle software engineering reflects what we believe
is general industry practice. Consider a popular modern
methodology, such as Scrum. Each day begins with a stand-
up meeting, where developers report on the development
tasks that they have, and haven’t, accomplished. Based on
this information, the team reassesses their priorities, and over
time derives an estimate of their development “velocity”.
Developers are free to work as fast or slow as they want;
management is prohibited from complaining about their
“speed”.

In the past few years, a different style of development
has emerged within the context of hackathons and startup
weekends. The relevant characteristic of these events is that
they take place over 24 to 48 hours, and thus a “slow”
developer is a significant liability to the team. In industry,
where the development time-frame is measured in weeks or
months, a “slow” developer could potentially compensate by
working a few extra hours on nights or weekends to increase
their “effective” speed. During a startup weekend, on the
other hand, there are no “extra” hours, and slow developers
are just plain slow.

Co-author Johnson looked at the projects created during
a Honolulu Startup Weekend, and realized that the tools and
technologies he was teaching provided an excellent basis
for success. But what he wasn’t teaching is how to use
these tools to code efficiently: how to start with nothing
and create a functional and interesting web application in
a matter of hours. In fact, he taught the opposite, giving
students significantly more time than required in order to
remove time as a factor. For example, he might give students
a week for a programming assignment that might take an
instructor an afternoon to finish. As a result, Johnson found
that his students were intimidated by Startup Weekend. The
very idea of coding under time pressure fell completely
outside their software development experience and training.
So when he offered it as an alternative to a midterm exam,
no students opted for it.

We now believe that in order for students to feel compe-
tent and confident enough to participate in a startup weekend
or hackathon environment, they need to train for it. And this
means not just learning useful languages, technologies, and
design patterns, it also means learning to code efficiently.
It means instead of thinking of development in terms of
days and weeks, students must think in terms of hours and
minutes. Instead of giving students 100x the time required,
we should regularly put them into situations where they have
just enough time to finish. In other words, students need to
engage in software development as an athletic activity, not
a cubicle activity.

Is athletic software engineering the right educational
goal?: It is not unreasonable to question whether or not an
athletic approach to software engineering, particularly the
pursuit of speed in coding, is an appropriate pedagogical
goal. As noted above, it is not part of mainstream software



development culture, and the most obvious measure of
coding speed, LOC/hour, is a canonical example of mea-
surement dysfunction[4]. So before detailing AthSE, here
are three key educational challenges and objectives:

(a) Speed does not mean sloppy, it means fluency. There
is a perception in software development that people who
code fast are cutting corners and producing low quality work.
Athletic endeavors are the opposite: the best athletes are fast
precisely because they have the best technique and greatest
efficiency of movement; in short, fast implies high quality.

Teaching students to code quickly in AthSE teaches them
to be fluent with their tools and technologies. Because mak-
ing errors slows development, they learn to avoid making
errors, and to more efficiently find and fix the errors they
make.

(b) The flow state as normal state. The programming
culture reveres the “flow state” as a semi-mystical occur-
rence where deep, uninterrupted concentration makes time
pass quickly, banishes all distractive thinking, and allows
bursts of creativity. It is viewed as an elusive and transitory
phenomena.

In AthSE, the “flow state is the normal state”: give
students a programming problem and very little time to solve
it, and they will enter the flow state and stay there until they
either finish the problem or run out of time.

(c) Solving the multi-tasking problem. A modern edu-
cational problem is multi-tasking: there is mounting research
evidence that multi-tasking impairs learning[2].

Athletic software engineering education solves the multi-
tasking problem by (i) creating a sense of urgency which
(ii) creates the “flow state” (see above) which (iii) removes
the desire to multi-task.

III. ATHLETIC SOFTWARE ENGINEERING IN A NUTSHELL

To understand what makes our approach “athletic”, it
helps to first consider some common alternatives to software
engineering education.

Lecture-based survey. One traditional educational model
involves the use of one of the many high quality Introduction
to Software Engineering textbooks, with lectures presenting
material from various chapters, and tests that assess the
ability of students to define or manipulate software engi-
neering concepts such as the “Spiral Model”, “White Box
Testing”, “Extreme Programming”, etc. This approach has
the benefit of being both comprehensive and consistent in the
way students each semester encounter the material. However,
it treats software engineering material at a conceptual level
which does little to help build competence and confidence
in applying these concepts.

Project-based practicum. This approach involves solici-
tation of “‘real-world” application requirements from the
surrounding community. Students form teams and attempt to
build software to satisfy their customer needs. The project-
based practicum tends to produce more engagement among

many students, although the experiences encountered by
each group varies a great deal based upon their community
sponsor. In addition, the experience of a student within a
single group can vary, and it is difficult to guarantee or assess
that all students in the group are gaining the same software
engineering experiences. The instructor must somehow find
a balance between micro-managing the teams to ensure a
successful outcome, or else let them learn their lessons the
hard way.

Flipped classroom. A third approach is to “flip” or “in-
vert” the classroom. In this case, lecture material is recorded
and provided to students via YouTube, leaving class time for
more active learning opportunities. For example, class time
can be devoted to what was traditionally “homework”, which
is why this approach is known as “flipped”. This approach
requires students to focus on videos outside of class, which
is highly susceptible to distraction and procrastination. There
is little to motivate the student to actively watch the videos
or even watch them at all.

Each of these approaches has their potential use cases,
and aspects of each can be blended into a single course, but
none attempts to explicitly address the problems of building
competence and confidence in developing software.

Athletic software engineering education resolves this di-
chotomy by differentiating between the creative aspects
and the mechanics of each software engineering skill to
be taught. Almost by definition, it is impossible to define
the “minimal” time for the creative part. However, as we
have discovered, it is straightforward to specify a reasonable
minimal time for the “mechanics”, and that this creates an
educationally interesting opening for application of athletic
concepts.

Let’s take a simple example: writing a unit test. In a
lecture-based survey course, students might read a chapter
about unit testing and learn how to compare and contrast it
with other kinds of testing (integration testing, load testing,
etc.). The instructor might require students to demonstrate
the ability to express this conceptual knowledge on a written
exam.

In a project-based practicum, students might be required
to develop unit tests for their application. Different groups
might develop their tests at different times and with different
technologies.

In a flipped classroom, students might learn about unit
testing through video lectures at home, then come into class
and develop a few unit tests under the guidance of the
instructor.

In athletic software engineering education, the writing
of a unit test combines creative decisions (deciding what
to test and why) and mechanics (the set of tasks to reify
those decisions in high quality software). In the first author’s
software engineering classes, the mechanics involve testing
a Java abstract data type using the JUnit library with
code edited using the IntelliJ IDEA interactive development



environment. Adherence to coding standards is verified by
Checkstyle, and the completed unit test is stored in a GitHub
repository.

More specifically, mastering the mechanics of unit testing
means the student can efficiently: sync their local repo
with GitHub; create a local branch to hold their unit test
development code; use IDEA shortcuts to create the Java
class to hold the unit test and automatically import the
appropriate JUnit library; apply refactoring if needed to
extract a method for testing; use method completion to
reduce the keystrokes required to create assertions; invoke
the unit test within IDE; invoke Checkstyle to verify coding
standards and fix any errors that occur; commit the finished
code to the branch; and merge the branch into master.

As you can see, the mechanics involved with developing
even a simple unit test are extensive, and involves an
interplay between six languages, tools, and technologies
(Java, JUnit, IntelliJ IDEA, git, GitHub, and Checkstyle).
And, as we have discovered, students can be incapable of
developing unit tests, or take an excessive time to do so, not
because of the creative decisions, but simply because they
do not have mastery of the mechanics and no amount of
googling can rescue them.

The good news is that by integrating athletic concepts into
the curriculum, students can not only gain mastery of these
mechanics, they can gain this mastery in a way that also
overcomes self-doubt in their ability to develop software. In
a nutshell, athletic software engineering education involves
the following:

(a) Structure the curriculum as a sequence of skills to
be mastered, not as concepts to be memorized. While it is
important, for example, for students to understand the con-
ceptual difference between unit testing and load testing, ath-
letic software engineering focuses on skills (i.e. mechanics)
whose acquisition can be demonstrated via the solving of
problems whose minimal time to solution is between 5 and
20 minutes. One of our courses teaches software engineering
concepts through two tier web application development, with
approximately a dozen “skills” each taking approximately a
week to cover.

(b) Create a set of “training problems” for each skill, each
accompanied by a video that demonstrates their solution
in “optimal” time. Once a skill has been identified, the
instructor provides background readings about the skill.
More importantly, the instructor also provides sample prob-
lems whose resolution requires use of the skill, along with
an online video (typically YouTube) that shows a timed,
“reference solution” for the problem. The video solution
time becomes the operational definition of “minimal” time
(we call it “Rx” time) to solve that problem. For example,
the Rx time for one of our unit testing sample problems is 15
minutes. In addition to Rx time, we also provide a “DNF”
(Do Not Finish) time, which indicates the maximal amount
of time to spend solving the problem before we recommend

they simply start over. For the unit testing problems, DNF
time was 20 minutes.

(c) Provide time to learn to solve the training problems
in Rx time. Given the background readings and the sample
problems, the students now must practice the mechanics
until they can also solve the sample problems in close to Rx
time. In a recent class, all but one of the students reported
that they attempted the problems at least two if not three
times in order to solve them in Rx time.

(d) Test mastery of the skill through an in-class, timed
problem. To assess progress toward mastery, test students
on a new problem requiring the skill that they have not seen
before. Prior to class, the instructor must solve the problem
to determine Rx time, and then adds 50-100% of that time to
determine DNF time. For students to get credit for the skill,
they must solve the problem both correctly and prior to the
DNF time being reached. In the unit testing example, the in-
class problem Rx time was 10 minutes, and the DNF time
was set at 20 minutes. (About a quarter of the class DNF’d
in a recent semester, either because they did not finish on
time or did not produce a correct solution.)

(e) Move on to the next skill, typically based upon many of
the same tools and technologies. Note that the unit testing
skill was based upon six underlying technologies, so it’s
possible to leverage the learnings from one skill in surprising
way. In this example course, the skill following unit testing
was basic UI design, which did not use Java, JUnit, and
Checkstyle, but did use IntelliJ, git, and GitHub.

The website for Advanced Software Engineering [5],
held at the University of Hawaii at Manoa during Spring
2015, provides a complete example of athletic software
engineering applied to a variety of skills.

In a nutshell, athletic software engineering education
requires students to demonstrate mastery of the mechanics of
various software engineering skillsets via timed assessments
that they must complete both correctly and within a certain
time limit. We have found that this reduces distraction,
improves focus, and makes learning more efficient thereby
building both competence and confidence in development
skill.

IV. IMPLEMENTING ATHLETICS IN THE CLASSROOM

Implementing an effective approach to athletic software
engineering education in the classroom is difficult. Here are
the key implementation concepts used by Johnson during
three semesters of AthSE at both undergraduate and graduate
levels and by Port in three undergraduate web application
programming courses:

Workouts, not classes. Reframe expectations for classroom
hours as “workouts”, not “classes”. Students do not come to
class to passively listen to the instructor imparting informa-
tion. Instead, they come to class prepared to engage in struc-
tured activities intended to assess and improve their ability
to develop software quickly. This leverages development of



flipped classroom techniques for software engineering where
acquisition of the material and “lectures” are designed to
be seen online prior to class, not during it. Class time
is focused on addressing gaps in understanding, applying
lecture material, and mastery of skills.

WODs: the new normal. A standard component is the
“Workout of the Day” or WOD (a term borrowed from
CrossFit). This is a timed programming task performed by
all members of the class with a simultaneous start time and a
recorded finish time. Regular WODs are extremely important
to developing speed, assessing competence, and building
confidence. The presence of others simultaneously attempt-
ing to complete the same task in as short a time as possible
creates motivation as well as a sense of camaraderie though
shared trials and experience. Students are expected to “train”
for WODs outside of class by repeating a practice WOD that
addresses a similar software engineering skill. To determine
the finish time for the practice WODs, and to provide a
reference solution, screencasts are provided demonstrating
the instructor solving the problem. The screencasts enable
students to see a solution within a fixed amount of time and
to learn how to efficiently solve a particular problem, often
learning new skills along the way. DNF indicates a “point
of no return”. For homework assignments (practice WODs),
reaching DNF indicates they should stop trying to solve the
problem and watch the reference solution, then delete the
work from their previous attempt, then try again. For in-
class WODs it indicates that the student did not adequately
train for that particular workout session.

In-class WODs are not graded according to the order in
which students finish. Rather, 100% credit is awarded if
the task is completed correctly within a fixed time limit
(typically 10-30 minutes, depending upon the task). Students
earn no credit if they do not complete the task correctly
or fail to finish within the time limit. It’s important to
emphasize that WODs are not veiled exams or quizzes
meant to torture them into learning the material. They are an
assessment tool by which students can directly measure their
progress and effectiveness in building their development
skills. Repeatedly DNF’ing indicates that a student may need
to review and adjust how they are training. For example, do
they repeat a practice WOD until they are able to complete it
within the expected time or do they not time themselves and
assume that if they got it to work that they have mastered the
task? WODs turn out to be interesting, fun, and motivating
for students, and as a result, build their competence and
confidence to the point where opportunities like Startup
Weekend or Hackathons seem attractive to them as a place
where they can show off their newfound skills.

Scoreboards for motivation, not humiliation. Publicizing
a standard scoreboard, with names (or even pseudonyms)
along with WOD performance creates a significant risk of
humiliation for the slow students, who will be obvious from
the public nature of the races themselves. On the other hand,

providing feedback on how you are doing relative to others
provides motivation to improve.

To minimize humiliation while providing motivation, we
do not provide public data on individual performances, but
rather the aggregate number of students who satisfied the
WOD at various levels and some general discussion on the
results without individual criticism.

Individual and group-based WODs. WODs can be de-
signed for individuals or groups of students. Groups (gen-
erally pairs of students) are randomly assigned by the
instructor; students cannot “cherry pick” partners in order
to improve their performance.

Learning the skill is separate from performing the skill.
It is not useful to give students a task for which they lack
the required skill set and then time their completion of the
task. For example, assume the task is to create a github
repository, push a webapp’s code into the repository, then
set up continuous integration and deployment of that system
using a cloud-based service. If the student has never done
that task before, it could take many hours of research to
figure out all of the steps and perform them successfully
for the first time. On the other hand, this same sequence of
steps is a canonical pattern that an experienced developer
could accomplish in minutes given fluency with all of the
associated technologies (i.e. in the case of one class, the
technologies include Java, Git, GitHub, Play Framework,
JUnit, Eclipse, Jenkins, MySQL, and CloudBees). There is
easily a 100x difference in speed between novice and expert
on this task.

To separate “learning” from “performing”, the class sep-
arates “homework” from “workouts”. Each workout (WOD)
is prefaced by assigned homework and practice WODs.
The students are provided reference material, lectures, and
sample tasks they can use outside of class to learn how to
perform the task and one or more practice WODs to “train”
on this task. Then, the in-class WOD assesses their ability to
complete the task in an efficient, rapid, and correct fashion.
An example practice WOD is shown in 1. Note at the top
of the practice WOD it refers to materials expected to have
been learned prior to attempting the task.

Importance of skilled coaching and individualized feed-
back. AthSE demands significant skill and expertise on the
part of the instructor. First, the instructor must be able to
develop an appropriate sequence of homework assignments
and in-class workouts (WODs and other exercises such as
warm-ups for WODs). Second, the instructor must determine
the Rx times. Third, the instructor should be able to monitor
students and provide feedback on how they can improve their
performance on WODs over time.

Startup weekend (or hackathon) or ambitious project
as final exam. It would be ridiculous to give students a
written final exam; that’s not what they’ve been spending the
semester training to accomplish. Instead, the course should
include a startup weekend, hackathon or an ambitious, real-



Figure 1. Example practice WOD. Rx means ”expert time”, Av means
”average time”, Sd means ”standard time”, and DNF means Does Not
Finish

world final project under a tight time-frame (e.g. days not
weeks) can be used. The idea is to provide students an
opportunity to showcase their skills and leave with tangible
evidence of their development competency. This not only
builds their confidence for efficient programming in future
classes, but leaves them with a development experience they
can refer to in job interviews and scholarship applications.

Athletic software engineering education cannot be
MOOCed or used in a large classroom setting. Massively
open online courses are an important breakthrough in edu-
cation, which can make certain types of learning available at
scales previously unattainable. Athletic software engineering
is probably not amenable to a MOOC environment or very
large enrollment courses. Similar to athletic training, very
few people have the internal motivation to “train” alone and
in physical isolation from others. Development of athletic
software development skills probably cannot happen without
a group setting, excellent “coaching” by the instructor, and
face-to-face interaction with coaches (instructor, TA, etc.)
and other students.

In the next section, we present initial findings from our
use of these techniques in a variety of settings along with
student feedback.

V. EXPERIENCES USING ASE

The athletic approach described above has been used
for over two years, in three different software development
based courses, and with three different instructors. Here

we summarize findings from implementing ASE in three
software engineering courses by co-author Johnson, for two
web-application development courses by co-author Port, and
one elementary programming class by co-author Hill.

A. ASE in software engineering curriculum

Co-author Johnson has so far taught software engineering
in an athletic style to two undergraduate software engineer-
ing classes and one graduate software engineering class.
The following results are taken from these courses with a
total of 46 students. To assess the approach, he required
students to write technical essays on their progress through
the course and administered a questionnaire near the end of
the semester that obtained opinions from all students in both
courses.

A brief summary of the significant findings include the
following:

Students like the athletic approach. Out of 46 students
surveyed, all but two (96%) prefer athletic software engi-
neering to a more traditional course structure. One student
commented, “I would choose to do WODs over the tradi-
tional approach because it helps you to become accustomed
to working under pressure. I find myself learning more this
way due to having to remember what I’ve done rather than
searching up on how to do something and then forgetting
soon after.”

Students will redo training problems to gain skill mastery.
While athletic software engineering makes it possible for
students to repeat training problems if they do not achieve
adequate performance, it does not mean students will do that
in practice. Think back to your own scholastic endeavors:
did you ever redo a home assignment from scratch just to see
if you could finish it faster? One of fascinating findings is
that the majority (72%) of students found it useful to repeat
the training problems, and most repeated over half of the
training problems at least once.

The athletic approach improves focus. Most students
(82%) indicated that they believed that athletic software
engineering helped improve their focus while learning the
material. One student commented, “Like many students,
when I do work at home I get distracted easily. This makes
my time management skills very ineffective at times, and I
would waste a lot of time [...] WODs definitely helped me
to accomplish more in less time.”

The athletic approach creates “comfort under pressure”.
Pressure is a part of a software developers life; starting
at the interview which typically requires the applicant to
solve a programming problem. Over 80% of the students
felt that this approach helped them to feel comfortable with
programming under pressure. One student commented: “I
am indeed more confident in programming under pressure. I
have learned to think not more quickly, but more calmly and
collectively, as that is probably most important in completing
a task faster.”



More specifically, 80% of the students surveyed felt:

• WODs are preferable to traditional course structure.
• WODs help them to be more focused.
• An in-class, graded WOD is helpful.
• They became more comfortable with programming

under pressure.
• They became more confident about their programming

abilities.

In summary, initial results from student self-assessment
of athletic software engineering as implemented by co-
author Johnson indicates they prefer this style of education,
they are motivated to practice skills repetitively to improve
their efficiency, they believe the pedagogy improves focus,
and they acquire a level of comfort with pressure during
programming tasks.

B. AthSE in a business school curriculum

Co-author Port adapted the athletic software engineering
approach to an introductory web applications programming
course which serves as the entry course to the Management
of Information Systems (MIS) major within the Shidler
College of Business. While this course shares many similar
objectives, goals, and challenges with typical software engi-
neering courses, there are some important differences. For
example MIS students are unlikely headed for a software
engineering career and as such they will not need a high
degree of technical depth in software development. Yet they
likely will be involved in some way with the acquisition,
development, maintenance or management of software sys-
tems and thus must be exposed to fundamental software
engineering concepts. The majority of our MIS students will
have little or no programming skills prior to this course, and
they are unlikely to take another programming based course
in the future. Nonetheless, subsequent core courses such as
systems analysis and design will assume they have program-
ming competency. The challenge of this course is to educate
absolute novices to (1) acquire basic programming fluency,
(2) acquire skills and strategies for becoming efficient in all
phases of planning, designing, programming, documenting,
and testing software applications, (3) understand why and
where MIS people need the aforementioned. This must be
accomplished all within a single semester.

Owing to these challenges, our interest in the athletic
approach lies in rapidly building competence, and perhaps
more importantly, having confidence in developing software.
Lack of confidence has been a serious problem for our MIS
students. It has led to a number of unpleasant consequences
downstream such as poor performance MIS courses, a high
incidence of cheating, and aversion to programming tasks
and projects e.g. getting others to do the programming. This
can lead some students to a lack of enthusiasm for MIS or
dropping out of the major i.e. “if this is what MIS is about
I don’t want to do it.”

Previously Port had implemented, with limited success,
many of the modern approaches discussed in section III. His
experience over the past three semesters with the athletic
approach indicates that it is highly effective in rapidly
building both competence and confidence in software devel-
opment for extremely novice MIS students. Unexpectedly
the athletic approach also appears to generate enjoyment
and enthusiasm for building software after competence and
confidence is achieved. In particular, it fosters determination
in getting software to work and elation when it does, rather
than fear and despondence when it does not.

Port applies athletic software engineering with WODs that
focus on basic programming concepts (e.g. loops, arrays,
etc.) rather than particular development technologies or
software engineering concepts. There are 7-9 WODs used to
solidify the application of a particular programming concept
after it has been introduced and experienced from in-class
lab exercises. WODs also do not persist for the entire class.
They are primary used to rapidly build basic programming
confidence. Practice WODs solutions are an excellent oppor-
tunity to introduce good programming practices, tools, and
efficiency techniques in a natural hands-on way that students
can immediately apply and appreciate e.g. using regular
expressions to search and replace a pattern of variable
names. WODs continue until the majority of the class are not
DNFing. From the experience over two classes this occurs
after 5-6 WODs. It’s important to have a few WODs after
this point to enable students to recognize and appreciate their
improvement efforts to successfully complete a WOD. After
basic programming concepts are covered, students switch to
designing and implementing full applications of moderate
complexity.

As prescribed by the athletic approach, throughout the
class students are asked to write about their experiences
and progress. This is essential in helping them identify
challenges and recognize improvement. This is also a handy
way to evaluate the effectiveness of the athletic approach.
Their first essay summarizes their experience in attempting
two HTML/CSS practice WODs. For each practice WOD
they are asked describe how long it took to finish and what
they learned (e.g. about HTML, CSS, Netbeans, LiveReload,
or Chrome Developer Tools). For each WOD that they
DNF’d, explain what happened and what was learned. If they
did a WOD multiple times, report the times of all attempts
and what was learned by doing them more than once. It is
important that this essay is done prior to the first in-class
WOD to set a baseline they can compare with later in their
effectiveness of preparing for a successful WOD. After they
experience two subsequent in-class WODs they are asked
to write an essay discussing their experiences in performing
WODs. What worked well, what they stumbled on, what
was ineffective. They describe how practice WODs help to
prepare them and what they could have done to be better
prepared. After the in-class WODs end, students are asked



to evaluate themselves in regards to their programming skill,
enthusiasm for programming, training using practice WODs,
ability to complete labs, and what has helped or hindered
their learning. These surveys, the course evaluations, and
monitoring enrollments in subsequence MIS courses indi-
cate:

• Students like the practice WODs and feel they learn a
great deal by attempting them then watching a solution
video.

• Some students do not like in-class WODs and are
frustrated when they repeatedly DNF. They do not like
the ”speed-game” and highly constrained environment.
However they eventually learn how to succeed and
believe WODs are essential for building their program-
ming competence. They do not believe WODs should
be eliminated from the class or replaced with more
traditional, outside of class assignments.

• Running WODs until students no longer DNF builds
confidence and enthusiasm. After completion of the
WODs, students felt ready to take on the challenge
of building full applications with more complexity and
less guidance.

• Compared to previous classes, students who experi-
enced the athletic approach performed better and a
higher percentage of students performed successfully
in subsequent MIS courses that depend on development
skill.

• Fewer students are dropping MIS as a major and there
has been a notable increase in the number of entering
the major.

• Students who were initially fearful of or dreaded pro-
gramming had shifted their views ranging from neutral
to enthusiastic. All students believe their development
skills greatly improved, typically well beyond their
expectations.

• The athletic approach can be discouraging to some
students. They are disappointed or worried when they
find their approach is not as effective as examples or
other students.

C. AthSE in introductory programming

In 2015, co-author Hill deployed a modified athletic
curriculum for introductory programming in CS 1 (python)
and CS 2 (Java). The in-class, timed problem was assigned
as homework if the students did not finish. However, to
receive an A grade, the assignment must have been correctly
completed during class. Grading preference was given for
correctness over submitting on time. The classes were not
completely flipped, but instead blended traditional lectures,
code demos to problems such as previous WOD or practice
WOD exercises, WODs, and in-class project work time. The
CS 1 class focused on intraprocedural programming (ifs,
loops, functions, etc.) within a single file, whereas the CS 2
course focused on object-oriented design and higher level

Lecture format CS 1 (%) CS 2 (%)
traditional lecture 5 (28%) 3 (60%)
code demo 16 (89%) 4 (80%)
WOD 6 (33%) 0 (0%)
assignment work time 7 (39%) 5 (100%)
Total respondents 18 5

Table I
PREFERRED CLASS FORMATS FOR CS 1 & 2 (STUDENTS COULD SELECT

MULTIPLE LECTURE FORMAT TYPES).

design concepts in creating programs with multiple files
(fields, methods, inheritance, abstract classes, interfaces,
etc.).

1) Experience: Anecdotal feedback from students was
positive for the practice WODs—many students said they
liked learning from the videos and would sometimes request
additional videos and practice WODs to help them learn
difficult concepts. One student complained the videos were
too long and meandering, since they walked through the
thought process and steps taken by the instructor to solve
the problem, rather than just jumping straight to the answer.

As an instructor, the videos provided additional content
hours outside of class to further help struggling students.
The downside is that creating the videos took additional prep
time, but this time would be gained in future offerings of
the course.

From a student learning perspective, the downside of the
practice WODs is that students who ran out of time before
the WOD would simply watch the video without trying it
themselves first. They would be lulled into a false sense of
confidence that would leave them ill-equipped to succeed
on the WODs. Perhaps being more strict on enforcing the
WOD time limits, or offering multiple WODs to demonstrate
mastery of a skill would have prevented this.

In a current offering of the CS 1 course, we have sim-
plified the WODs and scheduled them to occur during class
before the practice videos are posted. Students still have a
time limit on the practice WOD, but cannot see the video
solution until after the in-class WOD. This forces students to
do the practice WOD if they want to prepare for the in-class
WOD, which is taken almost verbatim from the practice
WOD. The practice WODs remain ungraded.

2) Student Feedback: Anonymous student survey feed-
back from the courses was mixed. In the CS 1 course, 18 of
the 25 students registered responded to the survey, with two-
thirds preferring the athletic approach over a more traditional
style. In contrast, of the 20 students registered for the CS 2
course, only 5 students responded to the survey, and 80%
preferred a more traditional approach. These students had
taken a version of the CS 1 course the prior semester, with
the same instructor, but with a more traditional homework
and lab structure. Table I shows the type of class format
students in each course preferred. Students tend to prefer



code demos, which is the category of the practice WODs,
but they prefer them during class time. The CS 2 students
who had a different course format with the same instructor
in the prior semester preferred more traditional lectures and
in-class work time, which were familiar activities to them
from CS 1.

Students in both courses complained that the competitive
nature of the WODs discouraged collaborative learning. A
CS 1 student said:

... it created a hostile environment where people
were afraid to admit that they didn’t understand
course material outside of class. Also, it made
peers less likely to help each other or provide
advice.

A CS 2 student felt:
... it wasn’t realistic. In a true development team,
there is more of a focus on collaboration and
working together rather than a competitive focus.

Whereas other students found that the competitive nature
spurred them to “do additional work using resources outside
of the class.”

When the students succeeded, it tended to create a sig-
nificant confidence boost, although some students felt like
success was only doing what they were “supposed to” and
felt more defeated when they couldn’t complete the WODs.

Students from both courses agreed that the athletic struc-
ture kept them focused, and really enjoyed the practice
WODs:

It was less stressful doing homework [practice
WOD] because I knew that the homework was not
graded. The homework was there solely to help
me learn, and that absence of negative pressure
allowed me to focus and concentrate more so than
I usually do.

The observations from the introductory programming
classes mirrored observations from the other experiences.
Students focused on learning design and organization in
a CS 2 class and an MIS course struggled with timed
assignments, whereas students in a more traditional CS 1
or software engineering course with small, concrete assign-
ments had a better experience.

VI. DISCUSSION

An ongoing question for this approach to education is
to better understand the kinds of material and situations in
which AthSE is preferred over more traditional approaches.
This is a difficult question to address: AthSE is a moving
target that has evolved over its various applications as unex-
pected benefits or liabilities have been discovered. However
we have amassed a great deal of anecdotal and empirical
data such as WOD performance results, student self-reported
assessments, course evaluations and class surveys. These

help us better understand and define what we are trying to
achieve.

Do students “get better” over time at software develop-
ment as a result of this kind of pedagogy? Some insight
into this may be gained by analyzing WOD results. But
gaining empirical insight from WOD results into whether
the students are improving in performance over time is
challenging due to the following confounding variables:

• The WODs vary in difficulty, so an increase or decrease
in WOD time does not necessarily indicate an increase
or decrease in performance capability; it is more likely
due to the difficulty of the task.

• The instructors assignment of Rx, Sd, and Av times
is arbitrary. It is quite possible that increases in (for
example) the number of Rx performances over time
is not due to actual performance improvement, but
merely due to assigning an easier threshold for Rx
as the course goes on. Nonetheless, consider Figure 2
which shows the percent of students who DNF’ed on
the chronologically ordered individual WODs.

Figure 2. WOD DNF % over time ICS 314 Fall 2013

Clearly, the percentage DNF shows a precipitous decline
after the first two WODs. We believe that the decline in
DNFs are a result of: (a) students learning how to use the
homework, including repeating practice WODs, to prepare
for the WOD; (b) students becoming accustomed to “pro-
gramming under pressure”, and not having it impede their
ability to accomplish the task at hand; and (c) several of
the poorer performing students dropping the class over the
course of the first six WODs. (Although note also that one
of the highest performing students also dropped the class,
so attrition did not occur from the bottom only.)

We believe that this decline in DNF cannot be attributed
to the WODs becoming easier. The Digits-Delete WOD is
substantially more complex than the CharFrequency WOD,
even though the Rx times are the same.



One unexpected result we have observed from imple-
menting an athletic approach is stronger student course
evaluations. Students tend to feel the course provides high
value and there is great appreciation for the instructor. See
[6] for examples. Perhaps this is due to tangible nature
of seeing WOD performance improve and the instructor as
“coach” rather than adversary or task master.

AthSE appears to have a substantial impact on learning
outcomes. Much of this impact appears to be quite positive,
however there are some challenges. For example, fear of
failure and WOD performance anxiety at the beginning
of the course. However, this appears to abate as students
become more comfortable with the approach.

One thing we can say almost with certainty about the
future of software engineering education is that our students’
success in their subsequent courses and in pursuing a soft-
ware engineering career increasingly demands they are able
to quickly learn apply the mechanics of software engineering
competently and confidently.

Based upon our initial experiences, we believe an athletic
pedagogy will find its place in the future of software
engineering education as a way to help students efficiently
acquire mastery of the mechanics of software engineering,
and thus create additional temporal and mental space for the
creative problem solving required in our discipline. As seen
by the diversity of student responses to different adaptations,
the approach is still in its infancy and will continue to be
refined and improved with additional experience. We invite
software engineering educators who find this approach of
interest to join with us to move it forward.

REFERENCES

[1] M. Csikszentmihalyi, Flow: The Psychology of Optimal
Experience, ser. Perennial Modern Classics. Harper & Row,
1990. [Online]. Available: https://books.google.com/books?id=
V9KrQgAACAAJ

[2] A. M. Paul, “How does multi-tasking
change the way kids learn?” Mind/Shift (on-
line), http://ww2.kqed.org/mindshift/2013/05/03/
how-does-multitasking-change-the-way-kids-learn/, May
2013.

[3] J. L. Bishop and M. A. Verleger, “The flipped classroom: A
survey of the research,” in Proceedings of the ASEE National
Conference, Atlanta, Georgia, 2013.

[4] C. Kaner, “A short course in metrics and measurement dys-
function,” http://www.kaner.com/pdfs/metrics measurement
dysfunction.pdf, 2002.

[5] P. Johnson, “Advanced Software Engineering,”
http://philipmjohnson.github.io/ics613s15/, May 2015.

[6] ——, “Ics 314 fall 2013 course evaluations,” http://www.
hawaii.edu/ecafe/published-results.html?id=1912#191753.


