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1 Introduction

Improvements in sensor and radio technologies allow for creation of cheap
sensors interconnected via radio links and the Internet. These advancements
opened the door for creation of large area autonomous monitoring networks
referred to as sensor networks. Sensor networks consist of at least one sensor
node and any number of processing nodes[4]. Sensor nodes are equipped
with embedded processors, sensors and communication mechanisms. They
are responsible for remote sensing and in some cases data transport[14].
Processing nodes lack sensors, but can be used to aggregate, process or
route messages to their destination. Arguably the first sensor networks
were developed by the US military in the 1970s [4]. Now sensor networks
are finding uses in medicine [12], power generation[19], heavy industry[15],
and many other fields.

Figure 1: CPU cycles of of an MSP430 based MCU requiring the same
amount of energy as transmitting a single byte over a particular radio[28].

Bandwidth requirements of a wireless sensor network has a direct effect
on its performance. This is especially true in battery powered devices, where
the power budget is commonly dominated by the radio module[28]. This is
further illustrated in Figure 1. An embedded microprocessor may be able
to execute hundreds of thousands of instructions in the same power budget
as sending a single byte over the embedded radio. Furthermore, minimizing
the bandwidth required to send a measurement, may in turn improve the
latency of the sensor network. Since a lot of sensor network radios are low
bandwidth, shorter messages propagate faster, even with the overhead of
local message processing. Finally, with the finite bandwidth available to
a sensor network, reducing the bandwidth requirements means that more
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sensors could be deployed, or a lower power radio may be utilized. There
are three bandwidth reduction methods described in this paper.

• Lossless Compression

• Lossy Compression

• Compressed Sensing

Lossless compression reversibly reduces data size proportionally to its
entropy. It can be very powerful in cases where expected signal character-
istics are known a priori[15][22]. Lossy Compression reduces the data size
by irreversibly changing the sampled waveform to a new form[35][1]. Com-
pressed sensing combines both the sampling and compression into one step
by crafting the data sampling proportional to the information content of the
signal, as opposed to the frequency content[5][20].

1.1 Sensor network topologies

Sensor network topologies can be described as a directed graph with sensor
nodes as source nodes and process nodes as inner nodes and sinks. Sensor
network topologies may change over time as sensor nodes move, go-offline
or are added to the network [4]. Common sensor network topologies used in
industry are shown in figure 2.

Figure 2: Common Network Topologies[17].

One way and bi-directional topologies are the simplest types of network,
consisting of a single sensor and a single processing node. In the one way
network topology the sensor node sends measurements at specific intervals.
In the the bi-directional case the processing node is able to request data
when it’s required and change sampling parameters of the sensor node[17].
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Star topology can be represented with a directed acyclic graph. This topol-
ogy is well suited for sensor networks deployed in locations with existing
local area network infrastructure. In this setting, processing nodes serving
as gateways can aggregate data from local sensor nodes and pass it upstream
via a local area network, or Internet[13]. Over the years this topology has
become known as the Internet of Things (IOT). In the mesh topology each
sensor node also performs a role of a router, passing messages between its
neighbors. Industry standard mesh network protocols such as IEEE 802.15.4
based ZigBee provide peer discovery and message routing[17]. Mesh topol-
ogy allows for self organization and redundancy. Furthermore mesh sensor
networks do not require existing infrastructure to function. Mesh networks
may have one or more sink nodes which function as aggregates for the sen-
sor data[6]. These sink nodes may be connected to the Internet in order to
transmit data to the acquisition server.

Some situations require more complicated network topologies. This is
especially true in sensor networks tasked with event detection as opposed to
general monitoring. In this case the sensor network must not only record sen-
sor data, but also process it in search of anomalies. This is generally referred
to as in-network processing[22]. In one of the fundamental sensor network
papers “Distributed Detection With Multiple Sensors” R. Viswanathan and
P Varshney described a multitude of sensor topologies useful for remote
event detection[34]. The authors also authors developed a mathematical
model for distributed detection efficiency based on Bayesian and Neyman-
Pearson statistical models.

1.2 Spectral Analysis

Spectral Analysis is a technique ubiquitous in many disciplines. The applied
view of spectral analysis extends matrix theory machinery, such as eigenvalue
and eigenvectors, to discrete finite time series data. It should be noted that
spectral analysis extends to many spaces beyond mathematical functions.
For example the Probabilistically Checkable Proofs (PCP) theorem, which
states that any proof regardless of the length or context can be verified to a
99% confidence in a fixed number of random checks, was proven via spectral
analysis [7]. Spectral analysis as whole is beyond the scope of this paper,
however there are two techniques which are important to understanding
the compression techniques presented in the rest of this document: Fourier
transform and Wavelet transform. Furthermore, since modern sensor net-
works are digital systems only the discrete versions of these transforms are
considered, namely Discrete Time Fourier Transform(DTFT) and Discrete
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Wavelet Transform(DWT). Formaly DTFT is defined as:

Fn =
N−1∑
k=0

xk · e−2πikn/N (1)

Where x0...xN−1 are real valued samples, sampled at fixed time offsets,
and F0..FN−1 are the Fourier coefficients. A useful interpretation of equation
1 is that F (n) is resultant of an inner product of the the vector x with a
complex sinusoid e−2πikn/N . This is useful because the set of all sinusoids of
form e−2πikn/N with n ∈ 0..N − 1 are orthogonal to each other and form a
complete basis for any vector x. As such, coefficient Fn represents the phase
and amplitude of the n’th sinusoid in the basis set. Inverting the DFT
operation is as simple as accumulating the contributions of each sinusoid in
the basis set and normalizing the result. Another way to describe DFT is
via matrix operations:

F = J · x, Jjk = e2πijk/N (2)

The matrix J is an n × n which represents DFT operation in matrix
form. This interpretation makes it easy to see that each row of matrix J is a
bandpass filter for frequency e2πjn/N , and is used extensively in compressed
sensing theory. From equation 1 DFT can not measure frequencies beyond
e−2πi or 1

2 of the sampling rate of x. This is effect is known as aliasing,
and formally known as the Nyquist limit. Frequencies f > 1

2fsampling will

contribute to the f
2 sinusoid basis instead. For this reason most digital data

acquisition systems will include an analog filter fronted, which will filter all
frequencies higher then

fsampling

2
Apart from the Nyquist limit DFT is limited by what is known as the

uncertainty principle. The uncertainty principle states that no signal can be
well localized in both frequency and time domain[23]. We can observe this
in the extreme cases where the DFT of the Dirac delta function is equally
distributed across all of the DFT coefficients, while a single coefficient spike
in the DFT domain transforms into a sinusoid in time. This feature makes
DFT a very powerful tool in compression, since a lot of signals that appear
random in time domain will be sparse in the frequency domain.

While DFT is an effective strategy for analyzing periodic signals, it is
not as useful for analysis of transient signals. Indeed, due to the uncertainty
principle,a signal which is well localized in time will have a large spread in
the frequency domain. DWT overcomes this limitation by switching the ba-
sis to a well localized functions called wavelets. A family of wavelets splits
the wavelet domain into orthonormal components just as the sinusoids split
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frequency space in the DFT. Wavelets act as a filter, successively filtering
out the low frequency components from the time series via the inner product.
Because wavelets are orthonormal and split the space perfectly each filter
operation is followed by a decimation, where 1

2 of the resultant coefficients
are discarded. Thus, for a vector of length n the first filter will produce n

2
low pass filtered wavelet coefficients and n

2 approximation coefficients. The
next iteration will operate on the previous stage approximation coefficients
and yield n

4 wavelet coefficients and n
4 approximation coefficients. Just as

with DFT, DWT is easily reversible via accumulation of the inner product of
wavelets and their coefficients followed by normalization. With the correct
choice of a wavelet many common signals can be transformed via DWT into
a sparse representation. Consider the power consumption of a household
smart meter shown in Figure 3, along with its wavelet transform[32]. While
the raw data looks complex and incoherent, a wavelet transform concentrates
the signal energy in only a few coefficients, thus yielding a very sparse rep-
resentation. This makes wavelets a popular tool for design of compression
algorithms which operate on transient signals[35].

Figure 3: Left: Power consumption of a house as reported by a smart meter.
Right: same data transformed into a Daubechies wavelet domain[32].

2 Lossless Compression

The goal of lossless compression is to create a smaller representation of the
data. However that is not always possible. It is trivial to show that no
lossless compression algorithm is capable of compressing every binary sting
to a shorter form. A compression algorithm must be bijective, with every
input string mapping to a unique output. By the pidginhole principle there
are simply not enough strings shorter then N symbols to encode all strings
up to length N. Lossless compression in network transport is often viewed
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as a straight forward trade between the processing power and bandwidth
requirement. This is not necessarily the case with sensor networks, since a
sensor node microprocessor often lacks math hardware functionality which
is heavily used in general purpose lossless compression algorithms, forcing
expensive software emulation.

2.1 F. Marcelloni, M. Vecchio

Sensor network designers can exploit prior knowledge about their measure-
ment in order to design Ad-Hoc lossless compression algorithms to suit their
needs. For example waveforms representing environmental factors such as
temperature and humidity are generally smooth and differentiable. Addi-
tionally, environmental sensor networks will sample at much higher sampling
rate then the bandwidth of the signal they are measuring. F. Marcelloni and
M. Vecchio developed an algorithm that exploits the fact that the difference
between the two consecutive measurements in an environmental monitoring
system tend to have low local variance[22]. Their algorithms, computes the
difference between consecutive ADC samples and encodes them using Huff-
man coding. Their simulations showed a compression ratio of 66% when
applied to temperate and humidity sensor data.

2.2 F. Marcelloni, M. Vecchio

Another example of Ad-Hoc compression algorithm comes from industrial
monitoring. In industrial settings, sensor networks are employed to detect
failing equipment before a complete breakdown. Failed bearings are one of
the most common failure modes associated with any rotating equipment.
Furthermore, worn bearings have a distinctive acoustic and vibration signa-
ture, which makes them fairly easy to monitor in-situ. Unfortunately due
to a high angular velocity of common industrial equipment such as CNC
lathes and mills, the desired signal often falls in the 1-5kHz range. Accord-
ing to the Nyquist theorem sampling rate required to reconstruct this signal
often falls into 10kSps range. Additionally, different failure modes result
in different signal powers at varying frequencies which does not favor lossy
compression or filtering. In order to bring down the bandwidth requirements
Q. Huang and B. Tang developed a lossless compression method which al-
lows for up to 85% compression ratio in bearing monitoring networks[15].
This algorithm combines the work done by F. Marcelloni with the tradi-
tional Discrete Cosine Transform based compression methods. Similar to
DFT, DCT transforms a time domain signal into a frequency domain. How-
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ever DCT only uses cosines and thus yields only real coefficients. Waveform
is transformed via DCT, and the high energy frequency bands are encoded
without compression. Low energy bands are encoded using the methodology
described in [22] where each consecutive phase measurement is subtracted
from the previous one, and then Huffman encoded. This method did not
only result in high data compression the during author’s tests, but also low-
ered the power consumption on the sensor node by 23% by lowering the duty
cycle of the radio transmitter.

2.3 S. Kalaivani, C. Tharini

Computationally simple compression techniques are sometimes desirable for
ultra-low power consumption devices. One such algorithm is presented by S.
Kalaivani and C. Tharini[16]. Their work focuses on Rice-Golomb coding.
While generaly not regarded as a compression algorithm, Rice-Golomb en-
coding can nontheless reduce the amount of bandwidth required to transmit
a waveform. In their work they extended Rice-Golomb coding to support
negative numbers, by creating a static offset equal to the absolute value of
the most negative sample of the dataset, thus turning it into a positive val-
ued dataset. This offset is encoded along with the data, thus allowing the
decoder to extract the original waveform. The advantage of the author’s
method is in its ability to perform both lossy and lossless compression while
maintaining compression ratio of up to 64% for lossless encoding and 50%
for lossy encoding. The algorithm is simple enough to run on devices with
limited mathematical primitives, and low memory.

2.4 S-LZW

Some general purpose algorithms can be adapted to the sensor network do-
main. The LZW algorithm is attractive, because it does not require complex
mathematical primitives to operate. It has a small network overhead, since
the dictionary is built from the bit stream and maintained independently by
both sender and receiver and finally its computational overhead and power
budget is fairly small. C. Sadler and M. Martonosi modified the LZW algo-
rithm to operate on blocks of data, encoding each block separately[28]. This
allowed the algorithm to operate over lossy channel, unlike a standard LZW
implementation. Authors showed that the power requirements for running
a modified S-LZW algorithm were significantly smaller compared to trans-
mitting uncompressed data. As such for battery powered devices, on board
lossless compression can improve battery life and reduce radio duty cycle.
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Furthermore on multihop, and/or low bandwidth links, compressed stream
resulted in lower latency, since it took much longer for the uncompressed
message to propagate over the slow physical link.

S-LZW algorithm is also well suited for hardware acceleration. C. Lin
and W. Wang developed a hardware based LZW compression engine and
demonstrated it in a production microchip[18]. What makes their approach
unique is the ability of their compression engine to predict the power con-
sumption required to compress a block of data. This, along with close
cooperation with the embedded processor, allowed the system to decide if
the compression is energy beneficial for a data block. The authors show
that their approach could yield significant energy savings if their methodol-
ogy is combined with an accurate power consumption model for the radio
transmitter.

2.5 Comparison of Lossless Compression Algorithms

Table 1 compares the compression algorithms discussed above. It is difficult
to gauge the performance of these compression algorithms, since apart from
S-LZW all of these algorithms operate in specific sensor network domains.
For example Q. Huang, B. Tang algorithms exploits periodicity in the sen-
sors measurements, and would perform poorly with environmental datasets.
Instead we rank the algorithms based on their computational overhead.

Table 1: Comparison of lossless sensor network compression algorithms.

Algorithm Type Overhead HW accelerated

F. Marcelloni M. Vecchio Huffman Low No

Q. Huang B. Tang DCT/Huffman High No

S. Kalaivani C. Tharini Rice-Golomb Low No

S-LZW Dictionary Low Yes

3 Lossy Compression

Lossy compression results in information loss. This implies that it is im-
possible to recover the original data set for the compressed data. It should
be noted that lossy compression may in fact result in no useful information
loss. In many cases the sensor’s precision is higher then the sensor accuracy.
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In these situations it is possible to compress the data while introducing
an error without compromising the measurement, as long as this error is
smaller then the accuracy of the sensor. For example T. Schoellhammer
and B. Greenstein developed a lossy compression algorithm which which
exploits this property, in order to compress a data stream without useful
information loss. [31]

As with all bandwidth constraint methodologies lossy compression relies
on the data sparcity. Generic lossy compression consists of three stages:[36]

1. Transformation: In this stage a sampled waveform is transformed into
a desired domain. Common domains include a wavelet representation
via a wavelet transform,[35] and a frequency domain, via a Fourier
or Cosine transform. These domains are used because they exhibit a
property called energy compaction, [Rao and Yip 1990] which means
that most of the signal energy is concentrated in a few select coeffi-
cients.

2. Adaptive modeling: In this step the algorithm selects a subset of co-
efficients computed from the transformation. Adaptive modeling can
be tailored to the specific accuracy requirement by varying the num-
bers of the candidate coefficient. Furthermore it may be tuned to the
bandwidth requirement by fixing the maximum number of candidate
coefficients. After the information selection a quantizer may be used
to further reduce the number of symbols in the candidate coefficients.

3. Entropy coding: A lossless compression stage further reduces the data
size, by compressing the coefficients acquired from adaptive modeling.

3.1 K-RLE

If the signal is already sparse in the domain it’s sampled in, it is possible
to compress it in situ, without performing the transformation step. In such
cases the adaptive modeling is performed directly on the sampled data. K-
RLE is one of the simplest sensor network data compression algorithms[24].
Given an error bound K, K-RLE will compare the current sample with tem-
porally consecutive waveform samples. All consecutive samples which differ
from the current sample by less than K are encoded with a current sam-
ple and number of occurrences. This algorithm is fast, memory efficient,
and provides an upper bound for the error rate. Using an environmental
monitoring data authors demonstrated up to 99.56% compression ratio with
sufficiently high values of K. It should be noted that simple run length en-
coding (K=0) was able to achieve 61.6% compression ratio with this dataset.
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3.2 LTC

T. Schoellhammer and B. Greenstein developed an algorithm LTC which is
a logical evolution of K-RLE[31]. Adaptive modeling and entropy coding
steps are essentially the same, but while K-RLE uses an identity function
as it’s transformation step, LTC algorithm uses the derivative operator.
Thus by transforming the signal into tangent space, uniformly monotoni-
cally changing signals can be efficiently encoded. This algorithm uses linear
interpolation in order to replace as many data points as possible with line
segments. It starts with the first data point, leaving it unchanged. The sec-
ond data point is used to generate a line between the two points. Following
points are added to the line segment, and the coefficients for the line are
reevaluated. If the error is within a bound ε, multiple points are encoded
as a single line segment, otherwise a new line segment is started. In the
best case a whole uniformly sampled waveform can be encoded as a starting
point and a intercept and slope of a line. Authors demonstrated compression
ration of upwards of 95% in environmental datasets.

3.3 Wisden

A wavelet transform is common as a transformation step in lossy compres-
sion. This is because a lot of signals are sparse in the wavelet domain.
Traditional wavelet transforms are computationally expensive requiring a
large number of floating point operations. However certain wavelet fami-
lies such as Cohen-Daubechies-Feauvea(CDF) rely only on integer addition
and bit-shifting for the transform, which makes them an ideal candidate for
low power sensor nodes. N. Xu and S Rangwala developed a compression
low power wavelet compression algorithm called Wisden based on the CDF
transform[35]. After the wavelet transform Wisden thresholds the data in
order to convert all of the coefficients smaller than the parameter ε to 0.
Remaining coefficients are normalized and quantized to an N bit representa-
tion. Late normalization allows for a reduction of floating point operations,
because the majority of wavelet coefficients are expected to be close to 0
anyways, and will not contribute much during the normalization process.
Finally, remaining coefficients are quantized to N bits and run length en-
coded. Using simulated vibration data authors showed that the Wisden
compression algorithm could deliver 95% compression ratio with 1bit RMS
error when using 4 bit quantization.It should be noted that the datasets com-
pressed in this study has a significantly higher information and frequency
density then the environmental datasets used in testing of K-RLE and LTC.
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While authors of Wisden did not provide a direct comparison to K-RLE
and LTC, one would expect that it will perform significantly better then it’s
real space counterparts. An example of a CDF wavelet transform and its
quantized representation is shown in Figure 4.

Figure 4: Comparison of the original and un-compressed wavelet transform
using Wisden[35].

3.4 M. Alsheikh, P. Pih

Interestingly the transformation used in the first stage of the lossy com-
pression does not have to be well defined. Instead an artificial intelligence
approach can be used for both the transformation step and decoding step.
This is especially true if the a large dataset of historical data is available.
M. Alsheikh and P. Pih demonstrated that a neural network can be used for
lossy data compression and decompression in sensor networks[1]. It should
be noted that their approach while very computationally heavy during NN
training is quite robust and lightweight during execution, as it is imple-
mented using only linear and sigmoidal operations. Their approach trains
the encoder and decoder NN in parallel constrained with the absolute error
between the encoder output and the decoder input. An additional constraint
is applied to minimize the L0 norm in the output of the encoder. This by
minimizing the error and bandwidth, a NN can be trained to compress and
decompress a waveform with minimal artifacts and bandwidth requirements.
Their approach outperformed frequency domain lossy compression methods
by an order of magnitude, while maintaining a similar average error rate
of 0.1%. However, algorithms ability to deal with anomalous data is not
discussed by the authors, and remains unclear.
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3.5 Comparison of Lossy Compression Algorithms

Comparison of lossy algorithms discussed in this section is shown in Table
2. As with the lossless counterparts most of these algorithms use different
datasets in ther evaluation, and as such direct comparison of their perfor-
mance is impossible. Instead we compare them by the domain, adaptive
modeling strategies and lossless compression steps. Furthermore we com-
pare the computational overhead of the algorithms discussed in this section.

Table 2: Comparison of lossy sensor network compression algorithms.

Algorithm Domain Adaptive modeling Compression Overhead

K-RLE Time Fixed error Run Length Low

LTC Tangent Fixed error Run Length Low

Wisden DCT
Thresholding/
Quantization

None High

M. Alsheikh
P. Pih

N/A Neural Net none Medium

4 Compressed Sensing

From the perspective of information theory, methods described in the first
two sections may seem very crude. Indeed both lossy and lossless compres-
sion methods described above rely on uniform time domain sampling. Such
sampling is inherently limited by the Nyquist theorem, which states that in
order to capture a signal with a frequency content of f without aliasing it
must be sampled at a rate of 2f . If nothing is known a priori about the
signal measured apart from its maximum frequency content, the Nyquist
theorem provides machinery to make a measurement. However, most sig-
nals are compressible, that is they are not simply white noise. Surely the
more we know about the signal’s information content, the fewer samples we
need to collect in order to reconstruct it. Compressed Sensing(CS) theory
uses this fact to reduce the bandwidth required to make a measurement by
taking far fewer samples.

In order to formally define CS, we must first discuss the question of
sparsity and norms. A vector is considered k sparse in some basis Ψ if it
can be represented as

∑k
i=0 aiΨi, where Ψi is the i’th column vector of Ψ

in matrix form. Let’s define a k-sparse signal in basis Ψ as a vector of
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scalar values over the period of time zk = [z1, z2, z3...zn]. Since z is sparse
in the domain Ψ, the L0 norm(number of samples which are not 0) of x
where z = Ψx is much smaller then n. In CS our goal is to recover zk
from a series of measurements y = [y1, y2, y3...ym] such that m << n, and
m < k. Measurements y are a linear combination of z as defined by an m×n
measurement matrix Φ:

y = Φz = ΦΨx (3)

Equation 3 is under-determined since m << n. While there are infinitely
many solutions for x that satisfy 3. However through careful selection of
Φ and Ψ, and constraining x to being sparse, it is possible to recover the
original signal[2]. Mathematically this could be accomplished by finding a
vector x such that:

x = arg min||x̃||0 y = ΦΨx (4)

Where x̃ is the set of all possible solutions to y = ΦΨx. By picking
the solution which minimizes the L0 norm of x we reconstruct the signal of
interest. Unfortunately finding such a vector is NP-Hard, and computation-
ally infeasible[2]. On the other hand L1 norm(||x||1 =

∑
xi) minimization

techniques are ubiquitous in literature, and have been shown to be equiva-
lent to the L0 norm minimization in most cases[26]. Thus we arrive at the
mathematical definition of CS:[2]

x = arg min||x̃||1 y = ΦΨx (5)

There are three criteria required for correct reconstruction, which govern
the selection of Φ, Ψ, and number of samples m [3][2].

1. Ψ must be selected such that x is sparse.

2. m > C · k · log(n) where C is some small constant.

3. Measurements y must be an incoherent combination of Ψx.

While it is often impossible to know exactly which basis will lead to the
sparsest representation, Wavelet and Fourier transforms are the sparse basis
of many common signals. Second criteria sets a bound on the number of
samples required for reconstruction with respect to sparsity of x. Incoherent
property requires that each measurement y is an incoherent combination of
all values of the reconstructed vector Ψx.In order to guarantee a stable recov-
ery of x matrix Φ has to satisfy an Restricted Isometric Constraint(RIP)[33].
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An n × m matrix Φ satisfies RIP if and only if any n × m submatrix Φ′

(n < m) satisfies:

(1− δ) n
m
||y||22 ≤ ||Φ′y||22 ≤ (1− δ) n

m
||y||22 (6)

Where y is any k-sparse vector with k < s, and δ ∈ (0, 1) and ||y||22
denotes the square of the L2 norm(||y||2 =

∑
y2i ) of vector y. In layman

terms, equation 6 implies is that as one removes columns from the matrix Φ
it will remain a good basis for any sparse vector k. Unfortunately, finding
a matrix that satisfies equation 7 is strongly NP-hard[33]. Luckily many
random matrices such as Random Partial Fourier, Gaussian and Bernoulli
matrices have been shown to satisfy equation 6 with high probability.

4.1 L1 minimization

Most CS L1 norm reconstruction algorithms fall into two categories.

• Linear programing/Convex relaxing algorithm.

• Greedy pursuit algorithms.

Linear programing algorithms such as basis pursuit attempt to solve
equation 7 using convex optimization[11].

x = arg min||x̃||1, ||y − ΦΨx||22 ≤ ε (7)

These algorithms are iterative, and have the advantage of the adjustable
precision parameter ε. If ε is tuned correctly with respect to the error of the
measured signal, it is possible to reconstruct that signal without information
loss.

Greedy pursuit algorithms, such as matched pursuit, work by decompos-
ing the reconstructed signal into a linear expansion of projections over an
over-complete dictionary of waveforms D[21]. D contains a large number of
basis function for the space occupied by x, with a lot of redundancy. Thus
by iteratively selecting the projection of x on D which minimizes the error
one can very quickly converge to an approximation of x:

x ≈ xn =
N∑
n=1

angn, gn ∈ D, y = ΦΨx (8)

Where an is the weighted coefficient of xn projected on D. Intuitively as
n approaches the cardinality of the D, an → 0, however not all elements
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in D are required and a suitable approximation of x can be recovered in
order k steps where k is the sparsity of x. Greedy CS algorithms tend to
converge faster then their linear programing counterparts, while providing
a less accurate reconstruction.

4.2 Analog and Digital Compressed Sensing

The first academic work published on the subject of CS was written in
2006[8]. Since CS is a relatively young field the publications describing a
full CS sensor network are sparse. There is however, a large body of work
advocating for such systems and presenting working components of CS based
sensor networks. There are several ways that compressed sensing techniques
can be applied to sensor networks. Compressed sensing can be applied at
the node level, in place of lossy compression[20]. It is quite common for
sensor networks to monitor a global state of the environment, where each
measurement is correlated with neighbors. In this case it may be possible to
collect the measurements from the subset of the network and use compressed
sensing to reconstruct the entire state.

Performing CS at the node level has several advantages. While in lossy
and lossless compression the sampling is still carried out according to the
Nyquist theorem, in node level CS, the ADC sampling rate is significantly
slower. Furthermore, once measured the data is already compressed, thus it
requires no extra CPU cycles to process. This makes CS particularly well
suited for low power devices. An example node level CS implementation is
shown in figure 5.

Figure 5: Common analog node level CS architecture[5].

In this topology the measurement matrix Φ is applied via an analog
mixer and integrator. In order to make the measurement consistent all N
measurements must be performed at the same time. Such that measurement
would require N ADCs or at the very least a fast N channel ADC. Luckily
it easy to parallelize ADC conversion in certain ADC topologies such as a
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Ramp-Compare where each additional ADC may be implemented with an
additional comparator and counter register [5].

Another way to perform node level CS is in the digital domain. In this
case the single ADC still abides the Nyquist theorem, and specialized digital
hardware applies Φ in the digital domain. A diagram of such architecture
is shown in figure 6.

Figure 6: Common digital node level CS architecture[5].

In this case a digital mixer and integrator take the place of their analog
counter parts. It has been shown that the theoretical power consumption
of the analog CS systems is significantly higher then digital CS. The main
contributor to this discrepancy is the transconductance amplifier used in the
analog CS. This is illustrated in Figure 7

Figure 7: Theoretical minimum power consumption of node level CS for
digital and analog methodologies[5].
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4.3 Compressed Sensing Implementations

There are several node level CS implementations in the literature. F Chen
and A Chandrakasan presented a digital, hardware CS implementation in
90nm CMOS process. They used ASIC system coupled with radio to demon-
strate that for an EEG dataset their system consumed 16% of power required
by lossless LZW. This system used a random Bernoulli matrix as the mea-
surement matrix which was generated from a seed shared with the recon-
struction end. This allowed further bandwidth saving since the Φ matrix
does not need to be transmitted for reconstruction. CS is performed on
1000 8bit sample block with only 50 16bit accumulator values transmitted
over the radio. This results in compression ration of 90%. Raw data and
reconstruction data is shown in figure 8

Figure 8: Raw Signal and reconstructed signal using the CS sampling system
presented in[5].

There are situations where an analog CS frontend is desirable. In dig-
ital system [5] only 1000 sample block was used in the CS resulting in 50
measurements. Yet even in such a system the measurement matrix Φ is
1000 × 50 in size. This may not seem like a large amount of memory, but
it has to be randomly generated via digital circuitry every sampling block.
In cases of performing CS with images with number of pixels on the order
of 106, generating and buffering a suitable Φ becomes difficult. One way
to mitigate this issue was presented by M. Duarte and M. Davenport in
their single pixel camera[9]. Their camera utilized a square array of com-
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puter controlled micromirrors called digital micromirror device(DMD), and
a single pixel light sensor. An image is projected onto the DMD. Mirrors
pointed towards the light sensor contributed reflected light to photo sensor
signal, while those pointed away from the the camera contributed nothing.
Thus such electro-mechanical system effectively computed a single row of
y = Φz. By rapidly changing the DMD configuration and taking multiple
exposures, authors effectively created an electromechanical CS front end.
Their system was able to produce usable 256× 256 pixel images from 1300
measurements. Since then a full silicon implementation of this device has
been created, where an analog CS frontend takes place of the DMD[27].
Their integrated CS camera has been shown to outperform traditional DCT
image compression methods especially at lower compression ratios[27].

In recent years academic scope has shifted from CS imaging to CS video.
While video encoding is infeasible in many sensor network applications
due to the high computational requirements, CS cameras offer low power
consumption and high compression ratio. S. Pudlewski presented a CS
video encoding system suitable for low power sesnor nodes[25]. Similarly
to H.264 encoding, S. Pudlewski algorithms uses complete frames called
Inter frames(I-frame) and incomplete Predicted frames(p-frames). In this
CS video algorithm I-frames are composed of the CS measurements with
m ≈ n

10 . In order to exploit the intra frame compressibility S. Pudlewski
algorithm computes the difference in the CS measurements between two con-
secutive frames dv. If the dv vector is sparse enough another round of CS is
performed in software, and only the ≈ m

10 coefficients are encoded for every
P frame. On the decoding side, I frames are extracted using a greedy L1

minimization in the Wavelet domain. A similar minimization produces the
dv vector for the P frames, which are accumulated, and minimized yet again
to decode predicted frame. This approach has been shown to yield 170%
compression improvement over H.264. Another advantage of this method is
the low computational overhead, and high resilience to missing or corrupt
measurements.

Compressed sensing has another advantage over traditional methods. It
is very computationally difficult to reconstruct the vector x from the inco-
herent measurements without Φ[10]. Let’s consider a system where matrix Φ
is generated from a cryptographic key, and the sensor node and reconstruc-
tion server achieve a perfect key exchange. In such a system compressed
sensing can combine measurements, compression and encryption in a single
step. S. Chiu and H. Nguyen developed a prototype smart-meter system that
demonstrates utility of CS in a privacy sensitive environment[10]. Their sys-
tem, called Joint Data Compression and Encryption(JICE), uses a Gaussian
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random measurement matrix derived from a cryptographic primitive shared
with the gateway node. Authors found that JICE significantly outperforms
S-LZW and lossy wavelet compression algorithm similar to Wisden with
AES encryption.

There are several key advantages of performing CS at the node level.
Data sampling and compression can be combined yielding significant power
savings. Analog to Digital converters in most CS systems operate at lower
frequency, leading to additional power savings. Finally, compression ratio
for many complex signals is comparable or better then the lossy and loss-
less compression methods. There are several disadvantages to node level
CS. Firstly efficient incoherent measurement, which lies at the core of CS,
requires specialized hardware. Because CS is a relatively young field mea-
surement hardware is ad-hoc and tailored to the measurement. Secondly CS
makes it harder to perform node level data analysis. In order to process the
data, it must first be recovered via costly L1 minimization, which defeats
the purpose of CS.

5 Conclusions

Wireless sensor networks must overcome bandwidth, computational, and
power limitations in order to make a distributed measurement. Lossless com-
pression can minimize the bandwidth required for a sensor node to transmit
data thereby trading power and bandwidth constraint for additional com-
putational overhead. By exploiting redundancy in the input, lossless com-
pression algorithms attempt to reduce the size of the input. In the sensor
network domain, ad-hoc low power algorithms specifically tailored to the
data are preferred to the general purpose counterparts. Lossy compression
builds on the concept of lossless compression, but data is preprocessed to
make the lossless compression easier. This preprocessing step irreversibly
changes the data, making the recovery of the original input impossible. If
the difference between the input and the output is less then the uncertainty
of the measurements, no useful information is lost in the lossy compres-
sion process. Until 2006 lossy and lossless compression were the only tools
available to sensor network designer for data compression. Since then, lossy
compression research focus has shifted to compressed sensing. Compressed
sensing combines sampling, compression and possibly encryption in a single
step, without computational overhead inferred by lossy and lossless com-
pression. While still a young field, compressed sensing has shown to sig-
nificantly improve throughput of a sensor network, while maintaining a low
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power consumption[20]. Furthermore, since compressed sensing integrates
well with hardware, in the next decade we are likely to see highly integrated,
extremely low power, compressed sensing enabled general purpose sensor
nodes become available to researchers. Lossless compression will prevail in
fields where artifacts introduced by compressed sensing and lossy compres-
sion are unacceptable. Medical imaging for example relies almost entirely on
lossless compression. If there is no node level data processing requirement
compressed sensing allows for an efficient, low power, and low distortion
method of data collection, compression and encryption. Lossy compression
has a lot of utility in sensor network applications which require node level
processing, and can tolerate some distortion. All three strategies can pro-
vide significant bandwidth and power savings, however it is important to
select an approach which is suitable for a particular application.
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