
OPQ Version 2: An Architecture for Distributed,
Real-Time, High Performance Power Data
Acquisition, Analysis, and Visualization

Anthony J. Christe, Sergey I. Negrashov, Philip M. Johnson, Dylan Nakahodo, David Badke, David Aghalarpour
Collaborative Software Development Lab

Department of Information and Computer Sciences
University of Hawaii at Manoa

Abstract—OpenPowerQuality (OPQ) is a framework that sup-
ports end-to-end capture, analysis, and visualizations of dis-
tributed real-time power quality (PQ) data. Version 2 of OPQ
builds on version 1 by providing higher sampling rates, optional
battery backup, end-to-end security, GPS synchronization, plug-
gable analysis, and a real-time visualization framework. OPQ
provides real-time distributed power measurements which allows
users to see both local PQ events and grid-wide PQ events. The
OPQ project has three principal components: back-end hardware
for making power measurements, middleware for data acquisition
and analysis, and a front-end providing visualizations. OPQBox2
is a hardware platform that takes PQ measurements, provides
onboard analysis, and securely transfers data to our middleware.
The OPQ middleware performs filtering on the OPQBox2 sensor
data and performs high-level PQ analysis. The results of our
PQ analysis and real-time state of the sensor network are
displayed using OPQView. We’ve collected distributed PQ data
from locations across Oahu, Hawaii and have demonstrated our
ability to detect both local and grid-wide power quality events.

I. INTRODUCTION

As power grids transition from a centralized generation
model to a distributed model, maintaining stability requires
fine grained knowledge of the grid’s state[1]. Increases in
distributed intermittent renewable energy sources have caused
concern among utility and grid operators. Grid operators are
concerned that these renewables have negative effects on
the power grid. For example, in Hawaii, the public utility
was forced to halt photovoltaic (PV) installations in certain
neighborhoods due to concern that large penetrations of PV
could cause grid stability problems[2][3]. Monitoring power
quality (PQ) on a distributed generation smartgrid requires a
distributed sensor network. How do we collect, analyze, and
visualize PQ at the power grid scale using data gathered from
residential utility customers?

To answer this question, we developed and deployed an
open source hardware and software system focused on con-
sumer level monitoring across Oahu called Open Power Qual-
ity (OPQ). Version 2 of OPQ (OPQ2) is able to aggregate
distributed PQ measurements, perform high level real-time
PQ analysis and classification, and display PQ at both the
consumer and grid level. OPQ2 is a multi-layered framework
consisting of custom hardware for collecting distributed PQ
data (OPQBox2), a middleware for filtering and event de-
tection (OPQMakai), higher level PQ analysis (OPQMauka),

and finally a front-end for consumer friendly grid level PQ
visualizations (OPQView). The OPQ2 architecture is shown
in figure I.

Each OPQBox2 processes 2.7 billion samples per day.
Using node level feature extraction, OPQBox2’s forwards only
500,000 measurements to the cloud service in the same 24
hours. Further analysis and filtering typically yields a very
small number of PQ events. These events contain data from
every device on the network sampled at full resolution and
sampling rate. Through the use of our multi-tiered system, we
aim to bring grid operators and end users, useful, intuitive,
actionable, real-time information about the power grid.

II. RELATED WORK

Two prominent distributed power quality monitoring net-
works are PQube and FNET/GridEye. The PQube devices are
high performance 3 phase power quality monitors developed
by the Power Standards Lab (PSL). PQube is capable of
measuring both current and voltage waveforms at an extremely
high sampling rate and accuracy. PQubes devices utilize local
processing for event detection and classification, and has many
option for data transmission. Similarly the FNET project de-
ployed several dozen Frequency Disturbance Recorder (FDR)
devices across the continental United States. These devices
measure the grid frequency at their location, while the GridEye
web service displayed the real time grid status collected from
the FDRs.

While both PQube and FDR devices are well suited for
sparse grid monitoring, their price and reliance on local
processing, makes them less then ideal for dense deployment.
Residential power quality monitoring is further complicated
by privacy concerns. Lack of end-to-end encryption makes
devices such as FDR unsuitable for wide deployment in
residential settings.

In late 2014 we performed a pilot study (OPQ1) to test
the feasibility of our hardware and software system. Data
collected during this study showed strong correlations between
PV production and daily voltage trends. We demonstrated
that a grid wide view allows us to determine if PQ events
take place at the consumer level or at the grid level. OPQ1
attempted to solve the privacy issues by allowing the device
owner to coarsely set the device location. While successful



Fig. 1. OPQ System Architecture

it unnecessarily complicated the classification and analysis.
OPQ2 uses a coarse feature extracted data from each box
at the grid level to detect events which are temporally and
spatially correlated. This allows OPQ2 system to process raw
data containing only grid side events.

III. OPQ VERSION 2 ARCHITECTURE

A. OPQBox2

OPQBox2 is a modern, high performance, power qual-
ity monitor built with distributed measurements in mind.
OPQBox2 provides high resolution sampled data of up to
50kS/s at 16bits. Optional GPS synchronization and battery
backup can be added to the OPQBox2 to tailor it to a specific
power quality measurement.

OPQBox2 is assembled entirely in-house, from the enclo-
sure to the soldering of the components. The PCB schematic is
open-source and available online. The enclosure for OPQBox2
is cut to specification from acrylic sheets using a laser cutter.
Reflow soldering is used to attach the surface mount compo-
nents to the PCB, using a laser cut solder mask stencil to allow
easy application of solder paste to all of the contact pads.

While sampling and GPS synchronization is controlled by
the realtime DSP, all of the signal processing and communi-
cation is controlled by a Raspberry PI single board computer.
The Raspberry PI collects 10 AC cycles of ADC measurements
at a time and computes the utility frequency and Vrms. These
values are sent to the cloud triggering broker via WiFi while
the raw waveforms are buffered in the local Redis key value
store.

If the triggering data stream indicates a power quality event,
our middleware may request raw waveforms from the affected
OPQBox2s. When the triggering server requests data from an
OpqBox2, it requests a time range. This data is queried from
Redis, serialized into a single large data packet, and transferred
back to the requesting server. All of the communication
between the OPQBox2 and the cloud services are done over
an encrypted ZeroMQ connection[4].

Time synchronization of the OPQBox2 is performed via
Network Time Protocol (NTP)[5]. While OPQBox2’s are able
to synchronize via GPS, we found NTP to be suitable for
our system. We have verified the synchronization provided
by Network Time Protocol (NTP) by comparing frequency
measurements collected from two OPQBox2 devices and
examining their phase difference.

We also confirm the frequency resolution of the OPQBox
by supplying it a 60 Hz signal from a function generator

and observing the data recorded by the box. We plot the
frequency data and found that our box can accurately record
the frequency supplied by the generator.

B. OPQHub

OPQHub is OPQ’s middleware system and is responsible for
collecting raw and feature extracted data from OPQBox2’s and
for performing high level PQ analysis. OPQHub is split into
two components, OPQMakai, a pluggable filtering and data
request component and OPQMauka, a pluggable real-time PQ
analysis component.

OPQHub is a drastic change from OPQv1. OPQv1 per-
formed all collection, analysis, and display from OPQBoxes
on a single server. OPQv1 was incapable of scaling to larger
data loads and did not display a clear separation of concerns.
Our second iteration of software updates this by providing
separate, distributed layers for both triggering of raw PQ data
and higher level PQ analysis.

All communication between the OPQBox2 and OPQHub
passes through two connection brokers. These brokers allow us
to terminate encryption at the cloud boundary, thus simplifying
the analysis framework. ZeroMQ is used throughout our
cloud infrastructure to connect the analysis plugins to brokers
and other plugins. This allows us to form ad-hoc analysis
topologies, such pipeline processing, and map reduce pipelines
without interfering with regular data acquisition.

The triggering stream consists of the feature reduced
data(frequency and Vrms) for each device in the OPQ2 net-
work. This stream is brokered via the triggering broker, and
analyzed by the set of analysis plugins called OPQMakai. If
multiple devices show temporally coherent deviation from the
norm, OPQMakai will request the raw data from OPQBox2
devices via the acquisition broker.

Further analysis of the raw waveform is performed by the
OPQMauka analysis and classification system. Each of the
plugins in OPQMauka are responsible for different PQ classi-
fication and analysis tasks. We currently implement plugins
that detect and report PQ measurements, voltage sags and
swells, frequency sags and swells, and perform ITIC event
classification of voltage events. We’ve also developed plugins
that, along with the filtering framework OPQMakai, allow us
to detect these events on a distributed level. Data products
from OPQMauka are stored in a MongoDB database and are
presented to clients via OPQView.

OPQHub’s components, OPQMakai and OPQMauka are
described in further detail in the following sections.



C. OPQMakai

OPQMakai is responsible for selectively requesting raw
voltage waveform data from opqboxes by analyzing their
triggering stream. Triggering stream consists of the locally
measured voltage and frequency for a 10 cycle window. Root
mean square voltage measurements identifies voltage swells
and voltage sags. For the results of this paper, we set the
threshold to be +/- 5% of 120 Vrms. Frequency measurements
are used to identify frequency deviations. For the results of
this paper, we set the threshold to be +/- 1% of 60 Hz.
Once voltage or frequency event is identified, the triggering
system requests raw waveform data for 10 seconds around the
anomaly. If the duration of the anomaly is longer, then the
leading and the trailing edge of the disturbance is recorded.
Raw waveform data is stored in the in-memory Redis database,
and OPQMauka is notified of a new event. Figure 2 shows the
triggering stream reported to by an OPQBox2 during a voltage
sag. While the raw waveform is comprised of 10k samples,
only 9 Vrms samples are transmitted for the event detection.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

0

20

40

60

80

100

120

140

160

180

Vo
lta

ge
 (V

)

Threshold
Raw data
Vrms

Fig. 2. Voltage sag as measured by the OPQBox2. Positive half of the raw
waveform is shown in red. The voltage triggering stream is shown in red.

OPQMakai allows for additional triggering stream filters to
be added at runtime, which means that frequency and voltage
analysis can be extended with minimal interruption.

D. OPQMauka

OPQMauka is a distributed high-level sensor data analy-
sis platform. OPQMauka provides a distributed computation
model that is capable of scaling with the amount of sensor data
it is receiving. The OPQMauka processing pipeline is imple-
mented as a directed acyclic graph (DAG). Communication
between vertices in the graph is provided via ZeroMQ. Each
node in the graph is implemented by an OPQMauka Plugin.
Additional analysis plugins can be added to OPQMauka at
runtime, without service interruption.

Each OPQMauka Plugin provides a set of topics that it
subscribes to and a set of topics that it produces. These
topics form the edges between vertices in our graph. Because
each plugin is independent and only relies on retrieving and

Fig. 3. Overview of OPQMauka Architecture as a DAG

transmitting data over ZeroMQ, plugins can be implemented
in any programming language and executed on any machine
in a network. This design allows us to easily scale plugins
across multiple machines in order to increase throughput.
Further, this system makes it possible to create and activate
new plugins into the OPQMauka framework. Plugins can be
enabled or disabled without affected the rest of the framework.
The structure of OPQMauka is show in figure 3.

The following paragraphs briefly describe the working of
each plugin within the OPQMauka framework.

The OPQMauka Measurements Plugin subscribes to OPQ-
Makai’s triggering data stream, and samples the data at a
configurable interval and stores these measurements in Mon-
goDB for providing realtime visualizations of PQ data. This
plugin produces measurement messages which are used by the
voltage and frequency plugins to determine high-level voltage
and frequency PQ events.

The OPQMauka Voltage Plugin subscribes to high-level
trigger measurement messages and quickly identifies voltage
swells and voltage sags. The threshold by which the plugin
identifies swells and sags is configurable. For the results of
this paper, we set the threshold to be +/- 5% of 120 Volts.
Once voltage events are identified, the event is stored in a
MongoDB and a voltage event message is produced. These
events can be visualized in realtime using OPQView while
OPQMakai and the triggering framework collect raw data.

The OPQMauka Frequency Plugin subscribes to high-level
trigger measurement messages and identifies frequency swells



Plugin Subscribes Publishes
Measurement Triggering messages Heartbeat, Measurement

Voltage Measurement Heartbeat, VoltageEvt
Frequency Measurement Heartbeat, FrequencyEvt

ITIC VoltageEvt Heartbeat, ITIC
Data Acquisition Heartbeat, DataStored

Status Heartbeat
TABLE I

OPQMAUKA PLUGINS: PUB/SUB OVERVIEW

and frequency sags. The threshold by which the plugin
identifies swells and sags is configurable. For the results of
this paper, we set the threshold to be +/- 1% of 60 Hz.
Once frequency events are identified, the event is stored in a
MongoDB and a frequency event message is produced. These
events can be also be visualized in realtime using OPQView.

The OPQMauka ITIC Plugin subscribes to voltage events
and classifies them using the ITIC Curve[6], a power stan-
dardization curve that determines the likelihood of causing
damage to consumer equipment based on the magnitude and
duration of a voltage event. Classified ITIC events are stored
in MongoDB.

The OPQMauka Data Plugin subscribes to acquisition mes-
sages, waits a configurable amount of time for raw data from
OPQMakai to be populated from Redis, and then reads the data
from Redis, deserializes the raw data, and stores the data and
associated meta-data in MongoDB for further DSP processing
(namely classification) and for historical analysis.

Finally, the OPQMauka Status Plugin subscribes to heart-
beat messages which are produced by all OPQMauka plugins.
Heartbeat messages contain optional statistics about the state
of individual plugins and their respective workloads. The status
plugin stores health information in MongoDB which can be
queried to examine the overall health of OPQMauka and its
distributed plugins.

Table I summarizes the topics that each plugin subscribes
and publishes to.

E. OPQView

OPQView serves as the front-end user interface of the
OPQ2 system. It is implemented in JavaScript using MeteorJS.
OPQView serves as the end-point of OPQ2. OPQView is
responsible for displaying collected PQ data in a useful and
meaningful way. OPQView maintains a communications inter-
face with OPQHub via a MongoDB database, from which it is
able to reactively retrieve real-time PQ data. This data includes
voltages and frequencies measured by individual devices,
as well as PQ events and their corresponding waveforms.
OPQView does not only serve as a front-end to display real-
time data, but it can also display historical grid trends and
power quality events.

A screenshot of our realtime PQ events and measurements
from OPQView is shown in figure 4.

The real-time nature of our data allows for a wide potential
of visualization techniques - such as real-time heat maps of
device voltages and frequencies across the grid. OPQView also
supplies the administrative interface for OPQBox2’s, allowing

Fig. 4. OPQView Realtime Measurements and PQ Events

device owners to adjust their device’s privacy and sharing
settings as needed.

IV. FUTURE WORK AND CONCLUSIONS

Currently, OPQHub is capable of detecting and recording
frequency and voltage based PQ events. Voltage based events
include sags, swells. Frequency events are limited to frequency
deviation from the 60Hz nominal. Example of a triggering
stream of a frequency event is shown in Figure 5. This event
occurred during the lighting storm March 1st 2017, and is
likely a lighting strike. Two devices were separated by 5
miles and were connected to different substations. While utility
voltage varies wildly between households, utility frequency
tends to track closely across the entire grid.

Fig. 5. Frequency event. March 1st 2017.
Light aircraft such as fighters could dive-bomb, too, but this
was extremely risky as they could dive too fast to pull up in

time, or risk breaking up during the descent. And dive
bombers needed to get close to be accurate.

Frequency deviations on the order of 1
4Hz, can lead to load

shedding[7]. This is a process where a section of the power
grid is disconnected from the utility in order to preserve grid
stability. Collection and analysis of events such as this one will



ultimately lead to insights into power grid operation, and give
utility customers a more active role in power grid monitoring.

Future work on OPQ2 will focus on event detection and
classification. Detection capabilities will be expanded to in-
clude transient detection and sub-threshold behavior such as
flicker. From OPQ1 we found that device level transient detec-
tion leads to a high rate of false positives, thus OPQ2 transient
detection will involve a combination of device level feature
extraction, and server level correlation strategies. Currently
several methods based on spectral and compressed sensing
strategies are being evaluated.

REFERENCES

[1] T. Peffer, “Evaluation of challenges and potential applications of building-
to-grid implementation,” California Institute for Energy and the Environ-
ment Whitepaper, Oct. 2010.

[2] R. Fares, “3 reasons Hawaii put the brakes on solar–and why the
same won’t happen in your state,” Dec 2015. [Online]. Avail-
able: https://blogs.scientificamerican.com/plugged-in/3-reasons-hawaii-
put-the-brakes-on-solar-and-why-the-same-won-t-happen-in-your-state/

[3] A. C. Mulkern, “A solar boom so successful, it’s been halted,” Dec
2013. [Online]. Available: https://www.scientificamerican.com/article/a-
solar-boom-so-successfull-its-been-halted/

[4] P. Fengping and C. Jianzheng, “Distributed system based on ZeroMQ,”
Electronic Test, vol. 7, no. 7, pp. 24–29, 2012.

[5] D. L. Mills, “Internet time synchronization: the network time protocol,”
IEEE Transactions on communications, vol. 39, no. 10, pp. 1482–1493,
1991.

[6] “Power quality in electrical systems,” Apr 2011. [On-
line]. Available: http://www.powerqualityworld.com/2011/04/itic-power-
acceptability-curve.html

[7] W. C. New, “Load shedding, load restoration and generator protection
using solid-state and electromechanical underfrequency relays,” General
Electrics White Paper, 2014.


