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criminative characteristics and have its length known in advance and provided as input, which is an unrea-
sonable requirement for many real-world problems. In addition, patterns of similar structure, but of different
lengths may co-exist in a time series. Addressing these issues, we have developed algorithms for variable-
length time series pattern discovery that are based on symbolic discretization and grammar inference – two
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1. INTRODUCTION
The task of pattern mining in sequential data is an important problem that has many
applications. Typically, two types of patterns receive attention from researchers and
practitioners: (i) frequently occurring, highly similar patterns called time series motifs
and (ii) rare and unexpected patterns that are called time series anomalies.

The problem of frequent sequential pattern discovery spans multiple fields: it is
a pre-cursor to association rule mining [Agrawal et al. 1993], [Agrawal and Srikant
1995], the core of the biological sequence significance assessment [Durbin et al. 1998],
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Fig. 1: A screenshot of GrammarViz 3.0 GUI – an interactive time series pattern mining tool
implementing our algorithms. The approximate motif discovered in the insect dataset whose
length vary from 102 to 108 is shown. The top panel shows the entire dataset span highlighting
the motif occurrences, the bottom panels show the table of all patterns discovered in the dataset
and superimposed, z-normalized subsequences corresponding to the selected grammar rule.

[Gionis and Mannila 2003], [He 2006], [Staden 1989], [Buhler and Tompa 2002], and
play an important role in speech recognition [Vitevitch et al. 1997] and image analysis
[Julea et al. 2011]. A substantial body of literature has been devoted to techniques that
aid the discovery of frequent sequential patterns.

Anomalous (rare) sequential pattern detection is an equally important problem – the
ability to discover anomalies efficiently is particularly important in a variety of appli-
cation domains where anomalies convey critical and actionable information, such as in
health care, equipment safety, security surveillance, and fraud detection. The anomaly
detection problem has been studied in diverse research areas [Gupta et al. 2014]. De-
spite the problem’s simplicity at the abstract level, where an anomaly is defined as a
pattern that does not conform to the underlying generative processes, the problem is
difficult to solve in its most general form [Chandola 2009].

In our previous work, we defined two concepts that extend and formalize the notion
of frequent and anomalous patterns, namely “time series motifs”, which are, informally
stated, frequently repeated patterns [Lin et al. 2002], [Patel et al. 2002], and “time se-
ries discord”, the most unusual pattern in the observed signal [Keogh et al. 2005].
Since then, a great deal of work has been proposed for the discovery of time series
motifs [Grabocka et al. 2016], [Mohammad and Nishida 2014], [Beaudoin et al. 2008],
[Castro and Azevedo 2010], [Chiu et al. 2003], [Lin et al. 2002], [Meng et al. 2008],
[Minnen et al. 2006], [Minnen et al. 2007], [Mueen et al. 2009], [Oates 2002], [Patel
et al. 2002], [Tanaka and Uehara 2004], [Tanaka et al. 2005], [Tang and Liao 2008]
and discords [Piciarelli et al. 2008], [Yankov et al. 2008], [Kawahara and Sugiyama
2009], [Wei et al. 2006], [Gupta et al. 2014]. Moreover, compared with other techniques,
time series discord has been shown to capture the most unusual subsequence within
a time series that is likely to correspond to possible anomalies within the generative
processes, as was confirmed in a recent extensive empirical study by Chandola et al.,
where the authors conclude that ”..on 19 different publicly available data sets, com-
paring 9 different techniques time series discord is the best overall technique among all
techniques” [Chandola 2009].

Most existing work on time series pattern discovery, however, suffers a significant
limitation; that is, they require an input parameter, the expected pattern length m,
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Fig. 2: An exact discord discovered using GrammarViz 3.0 in the Video telemetry dataset [Keogh
et al. 2004]. The entire dataset highlighting the discord occurrence shown at the top panel, the
bottom panels show the table of discovered discords and z-normalized anomalous subsequence.

to be defined. This input requirement restricts the search space on pattern length,
allowing the search to finish in a reasonable amount of time. However, it also burdens
the problem of proper length selection to the user.

A few algorithms were proposed to discover motifs of variable lengths [Minnen et al.
2006], [Oates 2002], [Tanaka et al. 2005] [Nunthanid et al. 2011] [Tang and Liao 2008];
however, they either do so via post-processing, scale poorly, or quantize the whole data
rather than considering overlapping subsequences, often resulting in inaccurate and
incomplete patterns. Similarly, few algorithms were proposed for a variable length
anomalous pattern discovery among which the WCAD algorithm – a parameter-free
approximate anomaly discovery approach – proposed by Keogh et al. [Keogh et al.
2004] is closest to our technique. However, built upon the use of an off-the-shelf com-
pressor, WCAD is computationally expensive and still requires the expected anomaly
length to be specified.

In our previous work, we have addressed the aforementioned issue and proposed
the first realistic algorithm for the variable-length pattern discovery problem [Li et al.
2012], [Senin et al. 2015], [Senin et al. 2014]. We have shown that the frequent and
anomalous patterns of different lengths often co-exist within the same dataset and that
it is possible to discover them by using the combination of two techniques: time series
discretization and grammatical inference [Li et al. 2012], [Senin et al. 2015], [Senin
et al. 2014]. Figure 1 shows an example of our motif discovery technique applied to the
Insect dataset, where it discovers 9 instances of the approximately similar pattern.
Figure 2 shows an example of a time series discord discovery using our technique.

While the proposed techniques advance the state of the art in motif and discord
discovery by allowing variable pattern lengths, many challenges remain. The most
important ones arise from the nature of the employed techniques, namely discretiza-
tion and grammar inference. Specifically, the efficiency and the effectiveness of our
techniques depend on the proper (according to the task context) selection of discretiza-
tion parameters. While the ability to discover variable-length patterns mitigates some
of the parameter selection problem, the ability to select nearly-optimal parameters
is still largely unaddressed. The second challenge relates to the rule sets returned
by the grammar inference algorithm. Grammatical inference effectively decomposes
discretized time series into a large hierarchical structure describing long- and short-
term correlations between discretized subsequences. Often, however, the amount of
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grammar rules, each of which may correspond to many overlapping time series sub-
sequences, is too large and spurious to comprehend clearly. Thus, an efficient pattern-
pruning technique is highly desirable.

In this work we propose solutions for both problems: a semi-automated discretiza-
tion parameter optimization procedure, and two strategies for pattern numerosity re-
duction. Overall, in contrast with our previous work, in this paper we:

(1) introduce an implementation of the offline grammar inference algorithm called
RE-PAIR [Larsson and Moffat 1999] and show how its application improves the
time series motif discovery;

(2) propose a motif summarization technique based on clustering of similar pat-
terns;

(3) propose a greedy grammar rule redundancy pruning technique based on the
minimum cardinality maximum cover principle;

(4) propose and discuss discretization parameter optimization heuristics based on
the redundant rule elimination technique;

(5) demonstrate the implementation of the proposed technique in the interactive
time series pattern mining workflow.

The rest of the paper is organized as follows. Section 2 defines key terms and for-
mally states the problem. Section 3 describes the techniques we build upon – the time
series symbolic discretization and grammatical inference. We discuss the application
of these techniques to the problem of time series variable length pattern discovery in
Section 4. In the Section 5 we show two solutions for pattern redundancy reduction
and in the Section 6 we describe our approach for automated discretization parame-
ters selection. The proposed techniques are experimentally validated in the Section 7.
We conclude and discuss future work in Section 8.

2. NOTATION AND THE PROBLEM DEFINITION
To precisely state the problem at hand, and to relate our work to previous research, we
shall define the key terms used throughout this paper. We begin by defining our data
type, time series:

Definition 2.1 (Time series). Time series T = t1, . . . , tm is a set of scalar observa-
tions ordered by time.

Since we focus on the detection of patterns which are the local structural features,
we consider short subsections of time series called subsequences:

Definition 2.2 (Subsequence). Subsequence C of time series T is a contiguous sam-
pling tp, . . . , tp+n−1 of points of length n << m where p is an arbitrary position, such
that 1 ≤ p ≤ m− n+ 1.

Here, we introduce a notion of the sliding window. Typically, all subsequences of a
time series T of the length m are extracted by sliding a window of the user-defined sub-
sequence length n across T . This process, called sliding window subsequence extraction
results in a set of m− n+ 1 subsequences.

As it is well acknowledged in the literature, and as we have shown before in
[Lin et al. 2003], it is often meaningless to compare time series unless they are z-
normalized:

Definition 2.3 (Z-normalization). Z-normalization is a process that brings the mean
of a subsequence C to zero and its standard deviation to one and effectively enables
the comparison of time-series by their structural similarities [Goldin and Kanellakis
1995]. A z-normalized representation of the time series T can be obtained by subtract-
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ing the mean of T from each value and dividing by its standard deviation:

Tznorm =
T − µT

σT
(1)

Given two time series subsequences C and M , both of length n, the distance between
them is a real number that accounts for how much these subsequences are different.
The function which outputs this number when given C and M is called the distance
function and denoted Dist(C,M). One of the most commonly used distance functions
is the Euclidean distance:

Definition 2.4 (Euclidean distance). Euclidean distance is defined as the square
root of the sum of the squared differences between each pair of the corresponding data
points in C and M :

DistEucl(C,M) =
√
(c1 −m1)2 + (c2 −m2)2 + · · ·+ (ci −mi)2 + · · ·+ (cn −mn)2 (2)

Some of our techniques are built upon determining if a given subsequence C is sim-
ilar to other subsequences M under distance measure Dist. This notion is formalized
in the definition of a match:

Definition 2.5 (Match). Given a positive real number t (i.e., threshold) and subse-
quences C and M , if Dist(C,M) ≤ t then subsequence M is a match to C.

When searching for patterns using a distance function, it is important to exclude self
matches, which are subsequences that overlap the subsequence currently being con-
sidered. Such self-matches can yield degenerate and unintuitive solutions as discussed
in [Keogh et al. 2005]. For two subsequences C and M we define a non-self match:

Definition 2.6 (Non-self match). Given a subsequence C of length n starting at po-
sition p of time series T , the subsequence M beginning at q is a non-self match to C at
distance Dist(C,M) if |p− q| ≥ n.

In this work we discuss grammar inference-based algorithms designed to discover
two types of time series patterns: frequent patterns, i.e., motifs, and rare or anomalous
patterns, i.e., discords.

A time series motif is a frequently occurring pattern. Different definitions of motif
exist in the literature. As an example, [Lin et al. 2002] and [Lin et al. 2003] defined a
motif as:

Definition 2.7 (Closest-Pair Time series motif). The closest-pair time series motif is
the most similar pair of non-overlapping subsequences of length m (Tm

i , Tm
j ), where

i < j.

In this work, our definition of motif is not restricted to the closest pair, but rather, a
set of similar (possibly overlapping) subsequences found in the dataset. This definition
is closer to the one introduced in the original motif work [Patel et al. 2002]. In addition,
contrary to existing definitions, where similar subsequences in a motif must have the
same length, this requirement is lifted in our definition, and, in addition to that we
allow motifs to overlap.

Definition 2.8 (Approximate-Length Time series motif). The approximate-length
time series motif is a set of similar subsequences (Tm1

i1
, Tm2

i2
, ..., Tmk

ik
) of lengths m1,

m2, ..., mk, respectively, where i1 < i2 < ... < ik.

As mentioned, one of the most effective methods for time series anomaly detection
is via discord discovery. Formally, it is defined as:
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Definition 2.9 (Time series discord). Given a time series T , the time series subse-
quence C ∈ T is called the discord if it has the largest Euclidean distance to its nearest
non-self match [Keogh et al. 2005]. Thus, time series discord is a subsequence within
a time series that is maximally different to all the rest of subsequences in the time se-
ries, and therefore naturally captures the most unusual subsequence within the time
series [Keogh et al. 2005].

2.1. Problem definitions
The task of finding structural patterns in time series, i.e., time series motifs and dis-
cords, is defined as:

Given a time series T , find a subsequence pattern P that is the most frequently oc-
curring structural phenomenon in the time series; and find a subsequence C that is the
most (structurally) different from the rest of the observed subsequences.

Both tasks, however, are very difficult to solve in its general form without a notion
of the context [Lin et al. 2007] [Chandola 2009]. The context is the information that
can be induced from the structure of the dataset or specified as a part of the problem,
and, essentially, defines a normal or expected signal behavior. The context information
places constraints on both the search space and the results, making it possible to find
a meaningful solution. Based on this rationale, we re-define the motif and anomaly
discovery problems as: Given a time series T and some context, find the most frequent
subsequence pattern P ∈ T , and find the most structurally different subsequence C ∈ T ,
both of which can be related to the context.

Traditionally, in motif and discord discovery [Lin et al. 2007] [Chandola 2009], the
context is provided by the user-defined pattern length, and the notion of the “most
structurally different or similar” is defined as the largest Euclidean distance to the
nearest non-self match. Both constraints, while determining the task and the solution
exactly, place severe restrictions on the result by assuming unrealistic a priori knowl-
edge about the exact motif and anomaly lengths.

In this work we address this issue in two ways. First, our algorithms allow the pat-
tern length to vary in boundaries that are consistent with the time series context of
correlating patterns (as it is determined by the grammar induction algorithm used).
Second, we allow the user to control this context analysis process with our interactive
GUI tool. Specifically, we expect the user to navigate the dataset via panning and zoom-
ing and to select the input time series fragment that satisfies some subjective criteria,
such as the correspondence to the expected normal generative process. Given such a
fragment, our tool finds the optimal parameter set which yields the most descriptive
grammar about the fragment at the first step. It then applies these chosen parameters
to the whole dataset, highlighting motifs and anomalies at the second step.

The learned context, however, depends on the time series span analyzed. Thus, if
it contains long noisy or significantly different from the true or expected generative
process structural fragments, the inferred (learned) context may fail to capture the
true signal structure, and the technique will fail. Therefore, the proper input is crucial
for the context learning success, and for this reason we implemented our techniques
behind a graphical user interface (GUI) which facilitates human-computer interaction,
enabling high quality context selection through visual examination.

3. GRAMMAR-BASED TIME SERIES DECOMPOSITION
Before describing our approach in detail, consider the following example showing the
context-free grammar properties used in our approach. Let

S = abc abc cba cba bac xxx abc abc cba cba bac

ACM Transactions on Knowledge Discovery from Data, Vol. XX, No. XX, Article XXXX, Publication date: March 2017.



GrammarViz 3.0: Interactive Discovery of Variable-length Time Series Patterns XXXX:7

be the input string under analysis (e.g. derived from a time series and reflecting its
structure). For reason that will become clearer later, the input string consists of a se-
quence of words (in this example, 3-letter words or triplets). Each triplet is considered
an atomic unit, or a terminal in the sequence. The task is to find a hidden hierarchical
structure in this sequence by grammar induction.

A careful look at the string shows that there are two repeated patterns abc abc cba
cba bac separated by xxx. Ideally, we expect the grammar induction algorithm to reflect
this, as shown in the grammar obtained by the SEQUITUR [Nevill Manning and Witten
1997] algorithm on the input S:

Table I: The SEQUITUR grammar for the input string S

Grammar Rule Expanded Grammar Rule
R0 → R1 xxx R1 abc abc cba cba bac xxx abc abc cba cba bac
R1 → abc abc cba cba bac abc abc cba cba bac

In addition to these two repeated sequences separated by xxx, an attentive reader
shall notice that each of them consists of two sequences of paired words ”abc abc” and
”cba cba” which are followed by ”bac” – a property that can potentially be used. Indeed,
the second grammar inference algorithm implemented in our tool, called RE-PAIR,
[Larsson and Moffat 1999] exploits this property of the input string S in full:

Table II: The RE-PAIR grammar for the input string S

Grammar Rule Expanded Grammar Rule
R0 → R4 xxx R4 abc abc cba cba bac xxx abc abc cba cba bac
R1 → abc abc abc abc
R2 → cba cba cba cba
R3 → R1 R2 abc abc cba cba
R4 → R3 bac abc abc cba cba bac

As shown, both grammar induction algorithms successfully find repeated patterns
in the input string and create hierarchical structures of grammar rules that reduce
the length of the input string (i.e., compress it). Both grammars consist of grammar
rules that are encoded by non-terminals revealing repeated patterns in the input. At
the same time, the subsequence xxx is unique to S, and thus algorithmically incom-
pressible, was not included in any of the grammar rules.

In our previous work [Li et al. 2012] [Senin et al. 2015], we have shown that by the
analysis of a grammar built upon time series discretization, it is possible to identify
recurrent patterns, i.e. patterns that correspond to R1 in the SEQUITUR example and
R1–R4 in the RE-PAIR example, as well as anomalous patterns, i.e., xxx, at the same
time.

To illustrate this, suppose we annotate each word of the input string S with the
number of rules that the word appears in, excluding the top-level rule R0. The input
string S becomes the following in the case of the SEQUITUR application:

S = abc1 abc1 cba1 cba1 bac1 xxx0 abc1 abc1 cba1 cba1 bac1
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Since all words except xxx occur in the grammar’s single rule R1, they are all annotated
with 1; since xxx is not a part of the rule, it is annotated with 0. In the case of RE-PAIR
application, the annotation counts are different:

S = abc3 abc3 cba3 cba3 bac1 xxx0 abc3 abc3 cba3 cba3 bac1

Here, all occurrences of the words abc and cba have a count of 3 because they appear in
the grammar’s rules R1/R2, R3, and R4. The word bac has a count of 1 since it appears
only in R4; whereas the word xxx has a count 0 because it is not a part of any rule (R0
is excluded from counting).

As empirically shown in our previous work [Senin et al. 2015], the annotation counts
naturally reflect the algorithmic compressibility of terminal and non-terminal symbol
sequences; specifically, we have shown that the compressibility correlates the the fre-
quency of a symbol’s inclusion into the grammar rules. While most of the triplets in S
are compressible to a higher degree depending on the grammar induction algorithm
used, the triplet xxx0 is algorithmically incompressible by any of the grammar induc-
tion algorithms and thus algorithmically random.

In turn, if the input string S is derived by discretizing a time series into a sequence
of words, where each word corresponds to a time series subsequence extracted via
a sliding window, then the subsequence in the time series that xxx represents is a
potential anomaly, whereas other subsequences represent repeated patterns, i.e., time
series motifs.

Note that when identifying potential motifs and anomalies we have not used any
explicit distance computation between terminal or non-terminal symbols, grammar
rules, or their corresponding (i.e., raw) subsequences. Moreover, note that the time
series discretization technique SAX [Lin et al. 2003] and both grammatical inference
algorithms SEQUITUR [Nevill Manning and Witten 1997] and RE-PAIR [Larsson and
Moffat 1999] also do not compute any distance (i.e., they do not explicitly measure how
far apart objects are). Hence, unlike most of time series pattern discovery algorithms,
our approach does not require any distance computation to discover and to rank mul-
tiple potential motifs and anomalies.

In the above example, potential motifs and anomalies are discovered and accounted
for by a grammatical inference algorithm, which determines the pattern length auto-
matically in the course of the grammar induction process – a property which contrasts
with the rest of the time series pattern discovery algorithms that require the length of
a potential pattern to be known in advance.

3.1. Time series symbolic discretization
Since grammar induction algorithms are designed for discrete data, we begin by dis-
cretizing a continuous time series with SAX (Symbolic Aggregate approXimation) [Lin
et al. 2003]. In addition, since an anomaly is a local phenomenon, we apply SAX to sub-
sequences extracted via a sliding window. SAX performs discretization by dividing a
z-normalized subsequence into w equal-sized segments. For each segment, it computes
a mean value and maps it to symbols according to a pre-defined set of breakpoints
dividing the distribution space into α equiprobable regions, where α is the alphabet
size specified by the user. This subsequence discretization process illustrated in Figure
3 outputs an ordered set of SAX words, where each word corresponds to the leftmost
point of the sliding window, and which we process with numerosity reduction at the
next step.

As an example, consider the sequence S1 where each word (e.g. aac) represents a sub-
sequence extracted from the original time series via a sliding window and discretized
with SAX (the subscript following each word denotes the starting position of the corre-
sponding subsequence in the time series):
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Fig. 3: The illustration of time series subsequence extraction via sliding window and SAX dis-
cretization (left panels) and the SAX transform approximation error computation (right panels,
discussed in the Section 6). The distance values considered are the vertical lines highlighted
with cyan color.

S1 = aac1 aac2 abc3 abb4 acd5 aac6 aac7 aac8 abc9 . . .

In contrast to many SAX-based anomaly discovery techniques that store SAX words
in a trie or a hash table for optimizing the search, and essentially throw away the
ordering information, we argue that the sequential ordering of SAX words provides
valuable contextual information, and is the key for allowing variable-length pattern
discovery.

3.2. Numerosity reduction
As we have shown in [Lin et al. 2002], neighboring subsequences extracted via sliding
window are often similar to each other. When combined with the smoothing properties
of SAX, this phenomenon persists through the discretization, resulting in a large num-
ber of consecutive SAX words that are identical. Later, these yield a large number of
trivial matches, which significantly affect performance. To address this issue, we em-
ploy a numerosity reduction strategy: if in the course of discretization, the same SAX
word occurs more than once consecutively, instead of placing every instance into the
resulting string, we record only its first occurrence. Applied to S1, this process yields:

S2 = aac1 abc3 abb4 acd5 aac6 abc9
In addition to speeding up the algorithm and reducing its space requirements, the nu-
merosity reduction procedure provides an important feature in this work – it naturally
enables the discovery of variable-length motifs and anomalies as we show next.

3.3. Grammar induction on SAX words
Next, the reduced sequence of SAX words (from repetitions) is input into a grammar
induction algorithm in order to build a context-free grammar. GrammarViz 3.0 imple-
ments two GI algorithms: SEQUITUR [Nevill Manning and Witten 1997], and RE-PAIR
[Larsson and Moffat 1999], which we shall briefly discuss in this section.
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3.3.1. Sequitur grammar induction algorithm. SEQUITUR is a linear time and space algo-
rithm that derives the context-free grammar from a string incrementally. It is an
online algorithm which does not need the access to the whole input sequence before
building a grammar. Processing the input string from left to right, SEQUITUR builds
the hierarchical structure of a context-free grammar by identifying and exploiting sym-
bol correlations while maintaining the two constraints of uniqueness and utility at all
times. Although simple in design, SEQUITUR has been shown to be competitive with
the state of the art compression algorithms – the property which allows us to use the
notion of Kolmogorov complexity for anomaly detection [Senin et al. 2015]. In addi-
tion, SEQUITUR performance tends to improve with the growth of the input string size
[Nevill-Manning and Witten 1997].

When applied to a sequence of SAX words, SEQUITUR treats each word as an input
string token and builds the context-free grammar’s hierarchical structure. This struc-
ture recursively reduces all digrams—consecutive pairs of tokens (terminal or non-
terminal)—occurring more than once in the input string to a single new non-terminal
symbol.

3.3.2. Re-Pair grammar induction algorithm. RE-PAIR is a dictionary-based compression
method invented in 1999 by Larsson and Moffat [Larsson and Moffat 1999]. In con-
trast with SEQUITUR, RE-PAIR is an off-line algorithm that requires the whole input
sequence to be accessible before building a grammar. Similar to Sequitur, RE-PAIR also
can be utilized as a grammar-based compressor that discovers a compact grammar that
generates the text [Charikar et al. 2005]. As noted by the authors, when compared with
online compression algorithms, the disadvantage of RE-PAIR having to store a large
message in memory for processing is “illusory” when compared with storing the grow-
ing dictionary of an online compressor, as the incremental dictionary-based algorithms
maintain an equally large message in memory as a part of the dictionary [Larsson and
Moffat 1999].

RE-PAIR performs a recursive pairing step—finding the most frequent pair of sym-
bols in the input sequence and replacing it with a new symbol—until every pair
appears only once. The algorithm can be implemented in linear time and space
[Larsson and Moffat 1999]. Due to the simplicity and its off-line data processing
paradigm, RE-PAIR can be easily scaled over multiple CPUs, which is implemented
in GrammarViz 3.0.

From our experience, both algorithms are suitable for recurrent and anomalous pat-
tern discovery. The offline nature of the RE-PAIR algorithm and its symbol-pairing
design specificity typically result in creating grammars with much deeper hierarchy
and larger inter- or between-rule length variance than those created with SEQUITUR, a
property which sheds more light on the structure of the input data. At the same time,
SEQUITUR grammar rules typically map to longer subsequences with higher intra- or
within-rule length variance, which is useful in the variable length motif mining work-
flow. These distinctive properties are clearly illustrated in the examples above: for the
same string S, SEQUITUR produced a single, five symbols long rule (Tables I), whereas
RE-PAIR created a grammar hierarchy of four rules whose length varies from 2 to 5
(Table II). Table III and Figure 4 provide more evidence for these characteristic proper-
ties, as shown, SEQUITUR consistently produces grammars with longer, less frequent
rules, whereas RE-PAIR produces grammars with shorter rules but of higher occur-
rence frequency and deeper hierarchy (indirectly accounted for in the “Intervals” and
the “Rule coverage curve” columns).
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Table III: The quantitative comparison of SEQUITUR and RE-PAIR grammars. Note that
RE-PAIR consistently produces more frequent rules than Sequitur.

SEQUITUR grammar RE-PAIR grammar

Dataset Length Rules Intervals
Rule Rule Rule

Rules Intervals
Rule Rule Rule

mean frequency cov.curve mean frequency cov.curve
length min-max min-max length min-max min-max

GPS Track 17175 277 745 369.6 2 - 9 0 - 40 502 1466 364.0 2 - 13 0 - 78
Dutch PD 35039 251 1413 829.1 2 - 38 1 - 55 229 2249 825.6 2 - 46 0 - 75
ECG0606 2299 60 218 139.5 2 - 13 2 - 20 61 320 137.9 2 - 18 1 - 29
ECG308 5400 49 197 366.0 2 - 10 1 - 23 57 352 344.8 2 - 17 0 - 30
ECG15 15000 115 526 365.9 2 - 24 0 - 21 108 618 347.8 2 - 32 0 - 24
ECG108 21600 213 1068 349.7 2 - 37 0 - 27 196 1292 343.3 1 - 40 0 - 34
ECG300 536976 2376 35740 386.3 2 - 766 1 - 133 1654 36935 387.2 1 - 1734 0 - 40
ECG318 586086 1260 29075 489.0 2 - 1577 2 - 91 817 30086 476.2 1 - 2073 0 - 32
Insect 18667 411 1967 146.4 2 - 32 1 - 27 356 2128 143.5 1 - 54 0 - 27
NPRS43 18019 729 3300 135.6 2 - 62 1 - 40 660 3488 134.1 2 - 111 0 - 44
NPRS44 24125 950 4501 135.9 2 - 66 0 - 39 822 4697 134.3 2 - 139 0 - 44
TEK14 4999 106 428 149.2 2 - 16 0 - 45 128 538 148.7 1 - 24 0 - 48
TEK16 4999 92 346 150.1 2 - 17 0 - 40 118 497 147.8 1 - 18 0 - 40
TEK17 4999 98 366 148.9 2 - 12 0 - 41 119 511 149.8 1 - 22 0 - 44
Video 11251 150 1064 167.3 2 - 62 0 - 27 123 1320 161.4 1 - 64 0 - 30
Winding 2499 79 198 131.9 2 - 7 1 - 18 231 550 127.9 2 - 7 2 - 46

Fig. 4: The visual comparison of grammars built with SEQUITUR (top) and RE-PAIR (bottom)
for the Dutch Power Demand dataset when using GrammarViz 3.0 GUI with sliding window
of size 750, PAA size of 6, and Alphabet size of 3. The most frequent RE-PAIR rule covers 46
eight-day intervals with a pronounced pattern of five working days and also contrast abnormal
weeks containing national holidays; the most frequent SEQUITUR rule covers only 38 eight-day
intervals which are also more difficult to interpret. Right panels show superimposed time series
intervals corresponding to the most frequent rule occurrences in the input time series).

3.4. Variable time series pattern length
To reiterate the benefit of the numerosity reduction strategy and how it lends itself
to variable-length pattern discovery with GI, consider the single grammar rule R1
generated by SEQUITUR from the string S1 as shown here:

Grammar Rule Expanded Grammar Rule
R0 → R1 abb acd R1 aac1 abc3 abb4 acd5 aac6 abc9
R1 → aac abc aac abc

In this grammar, R1 concurrently maps to substrings of different lengths: S1[1:3] of
length 3 (i.e., aac1 aac2 abc3) and S1[6:9] of length 4 (i.e., aac6 aac7 aac8 abc9), respectively.
The potential anomalous substring “abb4 acd5” has length 2. Since each SAX word cor-
responds to a single point of the input time series (a subsequence starting point), R1
maps to its subsequences of variable lengths.
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3.5. Mapping rules to subsequences
As shown in the above example, by keeping the offsets of the SAX words throughout
the procedures of discretization and grammar induction, our algorithm is able to map
rules and SAX words back to their original time series subsequences.

4. PATTERN MINING WITH GRAMMAR-BASED TIME SERIES DECOMPOSITION
Previously in [Li et al. 2012], we proposed GrammarViz, an algorithm for variable-
length time series motif discovery that makes full use of the hierarchy in Sequitur’s
grammar. We showed the ability of the proposed algorithm to discover recurrent pat-
terns of variable lengths. This is due to several properties of the algorithm, including:
the data smoothing capability of SAX, numerosity reduction which enables the discov-
ery of variable-length patterns, and Sequitur’s utility constraint which ensures that
all of the grammar’s non-terminals correspond to recurrent patterns. Figures 1 and 4
show the examples of time series motif discovery using our tool which implements the
proposed algorithms.

In early GrammarViz 3.0 (i.e., GrammarViz 2.0) development iterations we also pro-
vided a pilot module demonstrating the potential of grammar-based time series de-
composition for the time series anomaly discovery — the research direction which we
later fully developed in [Senin et al. 2015], where we formally introduced the notion
of the grammar rule density curve which is the key to our grammar-driven anomaly
detection algorithms.

The rule density curve reflects the input time series compressibility and is built as
follows: an empty array of length m (the length of the time series T ) is first created.
Each element in this array corresponds to a time series point and is used to keep count
of the grammar rules that span (or “cover”) the point. Second, since the locations of
corresponding subsequences for all grammar rules are known, by iterating over all
grammar rules the algorithm increments a counter for each of the time series points
that the rule spans. After this process each element of the array contains a value in-
dicating the total number of grammar rules that covers the corresponding time series
point. The curve that corresponds to the array’s values is the rule density curve which
effectively marks each point of the input time series with its degree of normality/dis-
cordance with respect to a learned context.

Since each SAX string (which may or may not be a part of a grammar rule) corre-
sponds to a subsequence starting at some position of the input time series, the points
for which the rule density counters are the global minima correspond to the grammar
symbols (terminals or non-terminals) whose inclusion in the grammar rules are mini-
mal. These subsequences are algorithmically anomalous, and we consider the intervals
in the rule density curve containing the minimal values potential anomalies. As an ex-
ample, consider the rule density curves shown in the middle panel of Figure 5 where
the global minima of the rule density curve pinpoints the true, annotated anomaly that
is hard to detect even by visual inspection [Keogh et al. 2005].

The rule density curve properties can be explained by the algorithmic compressibil-
ity framework, where the algorithmic (Kolmogorov) randomness of a string has been
defined through its incompressibility, i.e., the lack of algorithmically exploitable re-
dundancy [Martin-Löf 1966], [Grünwald 2007], [Li and Vitányi 2013]. Consider the
role of the SEQUITUR digram uniqueness constraint, which ensures that none of the
digrams processed by the algorithm (i.e., compressed into non-terminals) repeats it-
self. This property guarantees the exhaustiveness of the search for algorithmically ex-
ploitable redundancies in the input string, and consequently asymptotically maximal
compression of the output string [Nevill-Manning and Witten 1997]. Both properties
put our approach within the Kolmogorov complexity framework based on the algo-
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Fig. 5: Anomaly discovery in ECG0606 dataset. The left top panel shows the anomalous heart-
beat location. The middle left panel shows that the rule density curve clearly identifies the true
anomaly by its global minimum. The bottom left panel confirms that the RRA-reported discord
has indeed the largest distance to its nearest non-self match. The right top panel shows super-
imposed z-normalized subsequences of ST waves in the first six heartbeats, the anomalous wave
is colored red; the bottom right panel shows their clustering with Euclidean distance.

Fig. 6: Incorporating the rule-density-curve approach in GrammarViz 3.0. The varying degrees
of shades in the background correspond to rule density curve values: the non-shaded (white)
intervals pinpoint true anomalies, whereas darkly-shaded intervals indicate overlaps between
recurrent correlating patterns.

rithmic compressibility and allow us to relate algorithmically incompressible subse-
quences to anomalies.

Figures 6 and 7 illustrate the implementation of our techniques for the rapid ap-
proximate time series anomaly discovery via rule density curve and for the exact time
series discord discovery using Rare Rule Anomaly (RRA) algorithm, in which we rank
anomaly candidates by their respective rule densities in search of exact, variable-
length discords [Senin et al. 2015].

5. ORGANIZING GRAMMAR-BASED PATTERNS
As shown above, the grammar-based time series decomposition offers an advanta-
geous capability to find patterns of different lengths. However, the hierarchical and the
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The best discord of length 11

Third discord of
length 189

Fig. 7: Incorporating the RRA algorithm in GrammarViz 3.0. The screenshot shows its applica-
tion to the video data telemetry. As shown, when configured with a window length of 150, RRA
was able to detect multiple discords whose lengths vary from 11 to 189.

variable-length natures of the patterns mean that often they are numerous and over-
lapping. While this specificity aids time series anomaly discovery [Senin et al. 2015],
the large number of overlapping time series motif candidates is difficult to examine
visually. To simplify the navigation and to provide basic ranking mechanism, our tool
implements interactive multiple-pattern selection capabilities and their ordering by
the rule order, average rule length, rule frequency, rule use, etc., and enables search-
ing in the pattern table by the query. Nevertheless, the capacity of organizing rules in
an intelligent way and a mechanism for their automated pruning are highly desirable.

In this section we describe two simple heuristics designed to reduce the number
of reported patterns. The first heuristic, performed via post-processing of candidate
motifs, is based on the exclusion of highly similar, overlapping patterns found with
clustering. In essence, we collect all subsequences corresponding to grammar rules
into a mixed bag, eliminate overlapping patterns and organize the remaining patterns
into a much smaller, representative set of motifs. The second heuristic is built similar to
the greedy solution of minimum-cardinality set cover problem (an NP-hard problem)
[Halperin and Karp 2005] [Young 2008] and attempts to find the smallest set of rules
which cover the most of the input time series in a greedy fashion.

5.1. Heuristic 1: Pruning similar overlapping patterns
As the first step of this rule-reduction process, we pool all of the motif subsequences—
that is, all subsequences that appear in at least one SEQUITUR rule—and sort them
in ascending order based on their lengths. Next, based on the user-defined length-
difference parameter, these subsequences are partitioned into several length groups.
In the second step, we remove all the redundant subsequences within the same length
group. A candidate subsequence is considered redundant if it overlaps with other sub-
sequences. When there is an overlap found there are different ways to decide which
subsequence to keep. A simple way is to remove the shorter one. Another method is
to compare the importance im of points in each subsequence. Value im is set as the
number of rules that point belongs to. Finally, we apply a Euclidean distance-based
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Fig. 8: Pattern groups after pruning and clustering

hierarchical clustering on the non-overlapping, similar-length subsequences to orga-
nize them into different pattern groups. Each pattern group (cluster) represents a mo-
tif. An example of clustered patterns is shown in Figure 8. There are only 25 pattern
groups (motifs) after this post-processing procedure, compared to 252 from the original
SEQUITUR rules.

The Table IV shows results of this rule-reduction technique application in our exper-
imentation with 16 real datasets.

5.2. Grammar cover
In order to formally describe our redundant rule pruning technique and later the au-
tomated parameters selection procedure, we shall define the grammar cover:

Definition 5.1 (Grammar cover). The grammar cover CoverG(T ) of a grammar G
inferred from a time series T is the ratio of two values – the number of time series
points which are located within any of the subsequences corresponding to the grammar
rules and the total length of time series.

Table IV: Comparison of original grammar, organized grammar, and pruned grammar

Dataset SAX param. Full SEQUITUR grammar Organized grammar Pruned grammar
Win PAA Alph rules max.freq. cover rules max.freq. cover rules max.freq. cover

GPS Track 350 15 4 278 9 0.9987 11 5 0.9310 29 9 0.9987
Dutch PD 750 6 3 252 38 1.0000 25 7 0.9707 9 38 1.0000
ECG0606 120 4 4 61 13 1.0000 14 7 0.9500 10 13 1.0000
ECG15 300 4 4 116 24 0.9996 25 8 0.9961 14 24 0.9996
ECG308 300 4 4 50 10 1.0000 17 8 0.9952 9 10 1.0000
ECG108 300 4 4 214 37 0.9972 14 8 0.9787 13 37 0.9972
ECG300 300 4 4 215 103 1.0000 49 9 0.9997 30 89 1.0000
ECG318 300 4 4 143 133 1.0000 49 12 0.9977 16 102 1.0000
Insect 128 4 4 412 8156 1.0000 21 8 0.9939 72 32 1.0000
NPRS43 128 5 4 730 62 1.0000 3 5 0.9871 80 62 1.0000
NPRS44 128 5 4 951 66 0.9997 4 6 0.9926 42 66 0.9997
TEK14 128 4 4 107 16 0.9990 18 7 0.9864 14 12 0.9990
TEK16 128 4 4 93 17 0.9958 17 8 0.9668 13 17 0.9958
TEK17 128 4 4 99 12 0.9990 16 8 0.9830 16 12 0.9990
Video 128 4 4 151 62 0.9998 32 11 0.9859 13 62 0.9998
Winding 120 5 5 80 7 1.0000 15 5 0.8692 14 7 1.0000
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5.3. Heuristic 2: Pruning redundant grammar rules
While it is natural to consider the most frequent repeated time series intervals as a
time series motif candidate, we observed that the most frequently occurred rules in R0
may not be the most informative due to the overlapping of their corresponding inter-
vals. To mitigate this issue, we develop a grammar-rule pruning technique based on
the greedy solutions [Young 2008] to minimum-cardinality set cover problem [Halperin
and Karp 2005]. It is a greedy algorithm that selects a minimal set of grammar rules
that provide the maximum grammar cover.

The pruning algorithm is shown in Algorithm 1. Its input consists of the grammar G
describing the input time series, and the time series length m. The algorithm outputs
a reduced grammar covering the same time series. The pruning process is wrapped
into the outer loop (lines 2-29) which breaks in two cases: (i) when the whole time
series span is covered by selected grammar rules or (ii) when it is impossible to ex-
tend the cover (lines 12-14). Two consecutive over-the-rules loops are inside the main
outer loop. In the first loop (lines 4-11) the algorithm finds the rule which extends
the current cover at most. In the second loop (lines 16-27) the algorithm performs a
check on whether the addition of the new rule makes any of the previously selected
rules obsolete – in that case the redundant rule is removed from the selection and set
aside. Upon finishing the pruning process, selected rules are partially expanded, fol-
lowing the exclusion of some of the initial rules (line 30), and the resulting grammar
is returned.

5.4. The intuition behind the rule pruning algorithm
The intuition behind this algorithm is simple – since our task in hand is to find maxi-
mally repeated and minimally-overlapping subsequences (which we consider the most
informative), at each iteration, as the best candidate we select the rule which covers
the most of the uncovered-so-far time series span thus naturally provides the most
information about its structure.

A notable property of our grammar pruning algorithm is that it searches for a min-
imal subset of grammar rules which has the same cover as the full grammar, which
relates it to a series of algorithms dealing with serial episodes mining from event se-
quences [Tatti and Vreeken 2012], [Van Leeuwen and Vreeken 2014], [Lam et al. 2014]
which employ coding tables to find a minimal set of episodes for the observed sequence
description in a succinct and characteristic manner. Also note, that these and our tech-
nique are built upon the similar foundation – the Minimal Description Length (MDL)
[Grünwald 2007] and Kolmogorov Complexity (i.e., algorithmic compression) [Li and
Vitányi 2013] formalisms.

6. AUTOMATED DISCRETIZATION PARAMETERS SELECTION
The problem of discretization parameter optimization for time series anomaly and fre-
quent pattern discovery remains unsolved to the best of our knowledge. In this work,
for the first time, we propose a semi-automated solution whose performance quality
increases with the user participation. The proposed solution is based on the inherent
discretization and grammar inference process properties which we shall discuss.

6.1. Discretization granularity effect on the grammar size and complexity
The discretization process discussed in the previous sections depends on three param-
eters: sliding window size, PAA size, and the alphabet size. To investigate the effect of
these parameters on the grammar’s quantitative characteristics, we conducted a series
of exploratory experiments using 16 datasets shown in Table III. These datasets rep-
resent a variety of generative processes: the GPS track dataset is transformed with a
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ALGORITHM 1: PRUNEREDUNDANTGRAMMARRULES

Data: Grammar G (a set of rules), length of the input time series m
Result: Grammar GR

1 range←array[0..m]; usedRules←∅;
2 while HasZeroes(range) do
3 bestRule←Null; bestDelta← −Infinity ; /* search for a rule that extends */
4 for r ∈ G do /* current cover the most */
5 if r /∈ usedRules & r /∈ removedRules then
6 delta = CoverDelta(range, r);
7 if delta > bestDelta then
8 bestDelta = delta; bestRule = r;
9 end

10 end
11 end
12 if bestDelta < 0 then /* break the pruning process */
13 break ; /* if unable to extend the cover */
14 end
15 usedRules←r; continueSearch←True;
16 while continueSearch do /* check if the adding of a new rule makes */
17 continueSearch←False ; /* the old selection redundant */
18 for r ∈ usedRules do
19 intervalsA←RuleIntervals(r);
20 intervalsB←RuleIntervals(usedRules −r);
21 if intervalsA covered by intervalsB then
22 removedRules←r ; /* remember the redundant with selection rule */
23 usedRules←usedRules −r ; /* remove redundant rule from selection */
24 continueSearch←True;
25 end
26 end
27 end
28 range←UpdateRanges(range, r);
29 end
30 GR←RulesAsGrammar(usedRules, G);

Hilbert space-filling curve log of the daily commute trajectories [Senin et al. 2015]; the
Dutch PD dataset represents the yearly energy consumption by the research facility
[Van Wijk and Van Selow 1999]; ECG datasets correspond to various phenomenas ob-
served in the ECG data [Goldberger et al. 2000]; Insect dataset reflects the insect feed-
ing behaviors [Mueen et al. 2009], NPRS data represent respiration rhythms [Keogh
et al. 2005], TEK [Keogh et al. 2005] and Winding datasets are from industrial pro-
cesses telemetry, and Video data is a telemetry stream from a video recording [Keogh
et al. 2004].

First, we investigated the effect of discretization granularity on the time series ap-
proximation error. For this, we designed an error function that is the sum of two error
values computed for each of the subsequences extracted via a sliding window. These
error values are (i) the PAA approximation error and (ii) the SAX transform approxi-
mation error, which are schematically shown at Figure 3. As shown, the PAA approxi-
mation error is the normalized sum of Euclidean distances between time series points
after z-Normalization and their corresponding PAA values:

ErrorPAA(Cp,p+n) =

i<p+n∑
i=p

√
(Ci − PAACi)

2

n
(3)
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Fig. 9: The illustration of the discretization granularity effect on the approximation error. As
the PAA and Alphabet parameters values increase, the approximation error decreases. The de-
pendency is more pronounced for longer and more regular time series (top row plots).

where C is the subsequence of the time series T extracted via sliding window of length
n. The SAX approximation error is the normalized sum of distances between the PAA
values and the centers of SAX alphabet cut segments to which this values belong:

ErrorAlphabet(CPAAk) =

i<k∑
i=0

√
(Ci

PAAk − CutCenter(Ci
PAAk))2

k
(4)

where k is the PAA size and CPAAk is the PAA transform of C. The value of the
CutCenter(Ci

PAAk) is taken from the table of precomputed values similar to the SAX
cut lines table.

The intuition behind this error function design is that it accounts for an averaged
distance between a time series point and its SAX representation over the whole time
series. Naturally, as the values of PAA and Alphabet parameters of SAX transform
increase, the approximation error decreases, as shown in Figure 9 where the surface-
composing values are averaged for sliding windows ranging from 30 to 400.

At the same time, as the PAA and the Alphabet values increase, the amount of SAX
words and their diversity also increase, causing the total number of rules in the re-
sulting grammar to grow. Figure 10 indirectly shows that dependency by the strong
negative correlation between the approximation error and the total number of rules in
the grammar.

6.2. The grammar reduction coefficient
Above, we proposed a grammar pruning procedure which is designed to eliminate re-
dundant grammar rules that do not contribute to the time series grammar cover. We
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Fig. 10: The correlation between the approximation error and the total number of rules in a
grammar. Larger grammars tend to have a small approximation error (which is linked to the
high discretization granularity).

Fig. 11: The correlation between the most frequent rule occurrence and the reduction coefficient.
Note, that while the correlation coefficient is positive in general, the minimal reduction value
(marked by the red dot) is not the leftmost one and, from our empirical evaluation, tends to
correspond to the value that approximately equals to the most frequently observed time series
structural phenomenon (i.e. motif).

propose to use the ratio of rules in the pruned grammar to the total number of rules as
the discriminative function for selecting the set of optimal discretization parameters:

ReductionCoefficient =
number of rules in the pruned grammar

number of rules in the full grammar
(5)

Specifically, in order to select the optimal discretization parameters set for a time
series under analysis, we propose the following process:
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— First, a parameter learning interval is chosen from the input time series. If the
input time series is short, its whole span can be used; if it is long (tens of thousands
of points), it is advisable to select a shorter interval to speed-up the sampling process.
In addition to that, it is advisable to choose an anomaly- and noise-free interval which
reflects the expected generative process in order to avoid learning biases.
— Second, a range of acceptable discretization parameter values is specified. For ex-
ample, for a sliding window length, the acceptable range can be from 10 to a doubled
length of a typical structural phenomenon observed in the time series. For PAA, a typ-
ical range can be from 2 to 50 (assuming that the sliding window length is more than
maximal PAA value); and for the alphabet from 2 to 15.
— Third, for each of the parameter combinations within the specified ranges, a gram-
mar is inferred and pruned, in order to compute the reduction coefficient value. How-
ever, during this sampling, any grammar whose cover falls below a fixed threshold—
usually in a range from 0.9 to 1.0 depending on the expectation for an anomalous
ranges fraction—shall be discarded as not describing the input time series in full and
the corresponding parameters combination is marked as invalid.
— Finally, among all sampled and valid combinations, we select the one which yields
the minimal value of the reduction coefficient as the optimal discretization parameter
set.

An explanation of our target function design and the parameter optimization process
can be that the grammar reduction coefficient reflects a number of properties. First,
it decreases when the denominator – a number of rules in the grammar – increases,
which happens when the discretization parameters grow and the approximation error
decreases (Figure 10). This growth, however, is limited by the cover threshold, which
makes sure that the correlations between words are occurring and it is possible to
describe the time series by the grammar’s hierarchical structure in full. Second, the
grammar reduction coefficient also decreases when the numerator – the number of the
rules in the reduced grammar – decreases, which happens when the small number of
non-redundant rules describes the time series in full (again, according to the desired
cover threshold). Thus, by the design, the minimal grammar reduction coefficient value
corresponds to a parameters set which allows to describe the input time series in full
with the minimal approximation error, and which, at the same time, allows to reduce
the grammar’s hierarchical structure to only a few non-redundant rules.

We implemented the parameters optimization workflow in GrammarViz 3.0 as
shown at Figure 12. The typical interactive workflow scenario for the parameter opti-
mization consists of few steps that can be repeated if necessary: loading the dataset
into GrammarViz 3.0 GUI, exploring it using panning and zooming, selecting a dataset
section which reflects the expected generative process, configuring the sampling grid
density, and running the sampler.

6.3. Parameters optimization algorithm’s complexity
The automated parameters selection algorithm proposed in this work consists of two
steps procedure run for each of the user’s defined values of sliding window size (W ),
PAA reduction coefficient (P ), and the SAX alphabet size (A). The first step of the
procedure is the grammar induction with RE-PAIR, which is of quadratic complexity
O(n2) where n is the size of the input time series. The second step of the optimization
procedure is the rule pruning step of following complexity: if m is the number of rules
in the RE-PAIR grammar, the pruning process is progressively reduces this number
to the k irreducible rules – a stepwise process with (sorting) complexity m ∗ logm +
(m− 1) log(m− 1) + ...+ (m− k) log(m− k), which is in the worst case (i.e., k = 1) has
a complexity of O(m2 logm). Since the both steps are run for each of the user-defined

ACM Transactions on Knowledge Discovery from Data, Vol. XX, No. XX, Article XXXX, Publication date: March 2017.



GrammarViz 3.0: Interactive Discovery of Variable-length Time Series Patterns XXXX:21

Fig. 12: The illustration of the parameters optimization module. After the user selected the
short subsection of the very long time series as the sampler input, GrammarViz 3.0 runs a vali-
dation dialog in order to verify the interval selection, cover threshold, acceptable discretization
parameter ranges, and the sampling grid step.

combination, the optimization algorithm’s complexity is W ∗P ∗A∗(O(n2)+O(m2 logm))
or O(C(n2 +m2 logm)) where the value of C depends on the user’s input.

7. EMPIRICAL VALIDATION
From our experience with the target function design, the proposed parameter opti-
mization process works best when the RE-PAIR GI algorithm is used, in this case
GrammarViz 3.0 parameter optimization workflow is able to find a discretization pa-
rameter combination which allows to capture the most frequently occurring structural
anomaly. Consider Figure 13 which shows examples of two datasets, ECG0606 and
Video telemetry, and compares kernel density estimates for the most frequent rule of
SEQUITUR and RE-PAIR grammars. The sampling shown was done over the param-
eters grid with the range of parameters for the sliding window size [30-460], PAA
[2-30], and the Alphabet [2-16] while the minimal grammar cover threshold was set
to 0.98. Obviously, the RE-PAIR algorithm is much more likely than SEQUITUR to pro-
duce a grammar whose most frequent rule occurs the same amount of times as the
most frequently observed time series structural phenomenon. Figures 15 and 16 also
support our claim that the proposed automated parameters selection process based on
the RE-PAIR algorithm is likely to find a parameters set which allows to capture the
time series structural phenomena which is the most frequent and which contributes to
the cover value the most.

We did not formally evaluate our technique performance in time series motif discov-
ery when compared with other techniques. The technical reason for that is the speci-
ficity of our symbolic discretization and grammar inference-based technique which es-
sentially reports correlation of symbolic sequences which we map back to the input
time series subsequences. Due to this specificity we had to significantly relax the def-
inition of time series motif by allowing variable length and overlap, which makes our
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Fig. 13: The illustration of the used GI algorithms performance difference when using datasets
with many recurrent subsequences and few anomalies. As shown, RE-PAIR is much more likely
to yield a grammar where the most frequent rule occurrence is equal to the occurrence of the
most frequently observed structural phenomena, such as a heartbeat or a telemetry cycle.
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Table V: The optimal discretization parameters selected by our approach. Note that these values
computed for RE-PAIR-generated grammars.

Dataset Optimal SAX Grammar Full grammar Pruned grammar Reduction
Win PAA Alphbt approx.err. rules max.freq. cover rules max.freq. cover coefficient

GPS Track 330 30 2 0.4656 393 23 0.9997 11 23 0.9997 0.0280
Dutch PD 460 30 2 0.5480 1397 46 0.9999 9 46 0.9999 0.0064
ECG0606 180 22 3 0.5383 152 14 0.9961 4 14 0.9961 0.0263
ECG15 220 22 2 0.6628 825 59 0.9988 10 59 0.9988 0.0121
ECG308 440 30 3 0.5113 246 13 0.9994 4 13 0.9994 0.0163
ECG108 220 4 12 0.5705 711 38 0.9989 25 35 0.9989 0.0352
ECG300 330 20 2 0.7088 1414 78 0.9999 8 78 0.9999 0.0057
ECG318 280 22 3 0.5233 1551 59 0.9999 14 58 0.9999 0.0090
Insect 160 4 9 0.6552 696 27 0.9993 36 26 0.9993 0.0517
NPRS43 30 30 2 0.3982 831 444 0.9998 18 444 0.9998 0.0217
NPRS44 30 26 2 0.4499 1158 620 0.9998 18 620 0.9998 0.0155
TEK14 360 24 8 0.3759 267 7 0.9860 7 5 0.9860 0.0262
TEK16 360 24 4 0.5092 190 17 0.9620 5 12 0.9620 0.0263
TEK17 340 20 8 0.4128 248 25 0.9884 6 6 0.9884 0.0242
Video 200 6 12 0.4203 621 45 0.9556 12 45 0.9556 0.0193
Winding 280 30 2 0.6617 456 3 0.9996 5 3 0.9996 0.0110

technique incomparable with exact motif discovery techniques such as [Mueen and
Chavoshi 2015], [Mohammad and Nishida 2014], or [Mueen et al. 2009]. In addition
to that, with our approach, by simply adjusting the sliding window size and the dis-
cretization granularity (manually or in automated fashion) we can easily achieve the
performance in frequent pattern discovery demonstrated by other approximate motif
discovery techniques such as [Grabocka et al. 2016] or [Chiu et al. 2003].

We evaluated the automated parameter selection procedure performance in the task
of time series anomaly selection. First, we run the sampler using the same parameters
ranges and the minimal cover threshold as in the above experimentation except that
we increased the upper bound for the Dutch Power Demand dataset up to 900 points.
The selected parameters are shown in Table V along with quantitative characteristics
of resulting grammars. Second, we run our Rare Rule Anomaly (RRA) algorithm [Senin
et al. 2015] implementation using these parameters with RE-PAIR algorithm. The com-
parison of the discords discovered this way and HOT-SAX [Keogh et al. 2005] discords
is shown in Table VI: our automated discord discovery approach was able to find the
true discord in 14 out of 16 test cases. In two unsuccessful attempts, the second-ranked
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Table VI: The illustration of automated discretization parameters optimization performance
when applied to the problem of time series discord discovery using RRA algorithm. We consider
HOTSAX discords to be true discords.

Dataset
Hand-picked HOTSAX Automatically discovered RRA Both

discretization parameters discord discretization parameters discord discords
Window PAA Alphabet position Window PAA Alphabet position length overlap

GPS Track 350 15 4 4657 330 30 2 4666 331 94.6%
Dutch PD 750 6 3 33980 460 30 2 33967 461 59.7%
ECG0606 120 4 4 391 180 22 3 1294 181 0.0%∗∗

ECG15 300 4 4 2266 220 22 2 2120 221 25.0%
ECG308 300 4 4 2278 440 30 3 2225 441 100.0%
ECG108 300 4 4 10699 220 4 12 10840 221 53.0%
ECG300 300 4 4 54859 330 20 2 54809 331 93.7%
ECG318 300 4 4 307102 280 22 3 307113 281 97.3%
NPRS43 128 5 4 14817 30 60 2 14861 31 24.2%
NPRS44 128 5 4 20458 30 26 2 20533 31 24.2%
Video 150 5 3 2302 200 6 12 2305 201 98.0%
TEK14 128 4 4 1091 360 24 8 72 361 0.0%∗∗

TEK16 128 4 4 4253 360 24 4 4061 361 100.0%
TEK17 128 4 4 2101 340 20 8 2037 341 100.0%
∗∗ In these two cases, the second discord discovered with RRA coincides with the HOTSAX discord

with the overlap of 91.7% for ECG0606 and 84.4% for TEK14.

discord coincides with the true discord – an issue which is known to happen because
we use normalized Euclidean distance (by subsequence length) for exact RRA discord
discovery [Senin et al. 2015].

7.1. Sensitivity analysis
In order to evaluate the proposed algorithm behavior, and specifically its sensitivity
to the noise in input data, we conducted an experiment using a synthetic dataset.
The dataset was generated by planting anomalies of various types into a sine curve
and adding a random trend and a various levels of noise to the resulting time series.
For each of the synthetic datasets, the experiments were conducted by using sampling
intervals of various length for the optimal parameters discovery followed by the discord
discovery procedure.

Figure 14 shows the synthetic dataset construction: the sine wave, five randomly
planted anomalies (from left to right: (1) max signal level for an interval of length
π, (2) signal compression for an interval of 3π, (3) signal expansion (delay) for an
interval of 1.5π, (4) no signal for an interval of length π, and (5) min signal level for
an interval of lengthπ). The added trend curve was generated by a random walk, noise
was generated using Gaussian distribution and scaled by 0.1 for 10% noise dataset, 0.2
for 20%, etc. The planted discords are highlighted in each of the six resulting datasets
used for evaluation.

For each of the six datasets, the following experimental procedure was performed:
(i) a sampling interval from the range [745 - 1070] (we used increment 5 for construct-
ing 64 sampling intervals of length 10, 15,. . . , 325) was selected as the input for the
parameters optimization procedure where sliding window was bounded by the range
from 10 to the maximal possible window and PAA and alphabet values were bounded
by the range of [2-12]; (ii) parameters optimization procedure discussed earlier was
performed and the best parameters discovered; (iii) the best parameters set was used
for the discord discovery with RRA algorithm. Five best discords reported by RRA
were evaluated for an overlap with the planted anomalies – in the case of an overlap
we accounted for a successful planted anomaly discovery.

Table VII shows the results of the experimentation. First, as it was expected, the
discord discovery rate decreased with the noise level growth. Second, we noticed that
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Fig. 14: Synthetic datasets used in experimental evaluation: five different anomalies were
planted into a sine wave modified with a random walk-based trend and added Gaussian noise.
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Table VII: The results of experimental evaluation. For each of 6 dataset from the Fig.14 we
ran an automated parameters discovery followed by the discord discovery procedure (with RRA
algorithm). Count of GrammarViz 3.0 success in each of planted discords discovery is shown as
a count. Also shown the discord discovery rate and the mean discretization parameters values.

Dataset
Discord id and its discovery Discord Mean discretization

success count (out of 64 tries) discovery rate values (64 tries)
#1 #2 #3 #4 #5 µ σ Win PAA Alphb

Sine wave and anomalies 40 64 64 64 53 4.5 0.5 29.1 6.2 5.4
Sine wave, anomalies and trend 52 63 34 53 36 3.7 0.8 28.0 6.1 2.9
Sine wave, anomalies, trend + 10% noise 56 63 43 50 35 3.9 0.8 27.8 4.8 3.3
Sine wave, anomalies, trend + 20% noise 58 64 54 50 30 3.3 0.6 29.0 4.7 3.3
Sine wave, anomalies, trend + 30% noise 52 63 32 53 18 3.4 0.8 28.0 4.9 3.0
Sine wave, anomalies, trend + 40% noise 45 64 8 48 7 2.7 0.6 31.6 3.7 3.7

the parameters optimization procedure was able to adequately adapt to the increas-
ing noise levels by coarsening the discretization: the mean PAA value (the SAX word
length) decreased from 6.2 to 3.7, the mean Alphabet size decreased from 5.4 to 3.
Third, we noted the differences in discord discovery rates among different anomaly
types. Specifically, the signal compression anomaly (#2) was discovered in almost all
cases, followed by the signal loss anomaly (#4), maximum signal value (#1), signal ex-
pansion (#3), and the minimal signal value (#5) which was the most difficult to discover
for our technique. Finally, we noted that the mean discretization parameters values
computed for all 64 runs of GrammarViz 3.0 enable all five anomalies discovery, which
is an additional evidence that in an average case our approach is able to successfully
discover close to the optimal discretization parameters.

8. CONCLUSION AND FUTURE WORK
In this work, we propose a grammar decomposition-based, interactive methodology to
find variable length time series patterns. Specifically, our technique enables discov-
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ery of variable-length approximate time series motifs and variable-length exact and
approximate time series anomalies.

In contrast with previous effort, this work proposes solutions for two problems as-
sociated with the grammar-based pattern mining framework – the candidate pattern
numerosity and the optimal discretization parameters selection. Specifically, we have
shown two complementary heuristics for pattern numerosity reduction: one of them
is based on the pattern similarity and aids discovery of structurally similar non-
overlapping time series subsequences, whereas another heuristics, based on the greedy
minimum cardinality maximum cover principle, aids the discovery of the minimal set
of frequent, overlapping patterns which explain the time series hierarchical structure
at most. Our discretization parameters optimization technique is based on the latter
numerosity reduction technique and guides the discretization parameters search to-
wards a set of parameters which provides a maximal reduction of the full grammar
rules amount while preserving the grammar cover, or, in other words, captures the
most of structural recurrent patterns in the smallest amount of grammar rules.

We have implemented all proposed techniques in an interactive visual time series
pattern mining tool called GrammarViz 3.0 which extends their capabilities by en-
abling the user to control the process and visually validate the results. With its use
we obtained empirical results which confirm that the grammar-based approach with
automated parameters selection is capable to find important motifs and discords.

Many future directions are possible. First, we would like to explore other
rule-pruning heuristics. Second, we would like to investigate the performance of
other grammar inference algorithms, such as SEQUENTIAL (improved SEQUITUR),
BISECTION, and GREEDY [Charikar et al. 2005]. We also plan to improve our parame-
ters optimization process speed by utilizing the DIRECT algorithm [Jones et al. 1993].
For the visualization tool, we would like to enhance the rule ranking and filtering fea-
ture.

9. APPENDIX
The GrammarViz 3.0 source code is open source and is available at https://github.com/
GrammarViz2/grammarviz2 src; the online tutorials are available at http://grammarviz2.
github.io/grammarviz2 site/.
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Hoang Thanh Lam, Fabian Mörchen, Dmitriy Fradkin, and Toon Calders. 2014. Mining compressing se-
quential patterns. Statistical Analysis and Data Mining 7, 1 (2014), 34–52.

N.J. Larsson and A. Moffat. 1999. Offline dictionary-based compression. In Data Compression Conference,
1999. Proceedings. DCC ’99. 296–305. DOI:http://dx.doi.org/10.1109/DCC.1999.755679
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