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ABSTRACT

Today’s big data world is heavily relied on to bring precise, timely, and actionable intelligence,

while being burdened by the ever increasing need for data cleaning and preprocessing. While in

the case of ingesting large quantity of unstructured data this problem is unavoidable, when it

comes to sensor networks built for a specific purpose, such as anomaly detection, some of that

computation can be moved to the edge of the network. This thesis concerns the special case of

sensor networks tailored for monitoring the power grid for anomalous behavior. These networks

consist of meters connected to the grid across multiple geographically separated locations, while

monitoring the power delivery infrastructure with the intent of finding deviations from the nominal

steady state. These deviations, known as power quality anomalies, may originate, and be localized

to the location of the sensor, or may affect a sizable portion of the power grid. The difficulty of

evaluating the extent of a power quality anomaly stems directly from their short temporal and

variable geographical impact. I propose a novel distributed power quality monitoring system called

Napali which relies on extracted metrics from individual meters and their temporal locality in order

to intelligently detect anomalies and extract raw data within temporal window and geographical

areas of interest. The results of this research should be useful in other disciplines, such as general

sensor network applications, IOT, and intrusion detection systems.
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CHAPTER 1
INTRODUCTION

Power quality research is a subset of power distribution research which focuses on studying

deviations from nominal power grid operating conditions. Devices connected to the power grid, as

well as the distribution equipment expect a certain frequency, voltage and harmonic content of the

voltage waveform they operate on. While most equipment maintains some hysteresis with respect

to deviations from the nominal, large enough deviations may cause equipment failure and instability

in the power grid as a whole. In a practical sense, power quality monitoring concerns itself with

monitoring, collecting and analyzing power quality anomalies on a live and functioning grid. In

some cases, for example when performed by the utility, this information is used to make real-

time decisions, to maintain the stability of the power grid. However, data collected by the power

quality monitoring equipment can also be used to diagnose local power quality problems, or to

further power quality research. Power quality monitoring fits very well into the paradigm of remote

sensing and sensor networks, particularly into the newly emerging field of edge computing. Edge

computing goes beyond the naive approach of transmitting the entirety of the collected data from

the sensor location, and extends it by either feature extracting, preprocessing or filtering the data

at the computing node itself. This research project will investigate the design, implementation, and

evaluation of a novel edge computing architecture called Napali which combines feature extraction

at the edge level and two way communication between the sink and the edge node. I will evaluate

Napali in part by implementing it in the power quality monitoring domain.

1.1 Overview of power grids

Modern power grids are hierarchically structured. Higher voltage is useful for transporting

electricity over long distances, connecting cities and towns to power generation facilities. Trans-

missions lines of 100kV and above are used to minimize losses in long distance runs, since the same

amount of power can be transmitted using much lower current, and thus much more efficiently,

then the comparable low voltage line. Close to the point of distribution, transmission voltage is

stepped down to 1kV-40kV range using large power transformers. This is done because the losses

incurred in the final leg of transmission are minimal, while extremely high voltage equipment is

expensive and requires special precautions.[24] Finally, at the consumer level the voltage level is

stepped down once more to the household voltage, for example 120Vac for North America. It is

important to note that voltage across every part of the power grid is synchronized to a phase and

frequency set by the utility. This allows multiple power producers to contribute to electricity gen-

eration without interfering with each other.[4] In North America the 60Hz utility frequency is used

as the baseline, and its long term stability is guaranteed by the power company. How close the

power AC frequency is to the nominal value is a measure of how closely the electricity demand is
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balanced by the electricity generation.

Traditional power generation sources involves applying mechanical torque to an alternating

current generator. If the load on the generator increases without increasing the torque, it will slow

down the generator and thus the utility frequency decreases. Similarly, if the demand drops but the

torque is not decreased, the frequency of generated power will increase. Even small deviations in

frequency can have adverse effects on equipment which runs synchronous to the power grid, such as

synchronous electric motors and other industrial equipment.[15] Nonlinear loads, or loads that don’t

draw a consistent amount of current through out an AC cycle, are highly prevalent in today’s power

grid. These devices contribute to the harmonic noise in power system in both current and voltage

waveform. This effect, known as harmonic distortion, can have various unintended consequences

on the power distribution system and connected devices. The current harmonic distortion affects

the efficiency of the distribution network, while voltage harmonics may propagate across the power

distribution infrastructure and affect neighboring devices.[16] Distributed renewable generation may

also create untended harmonics. Distributed generators are commonly DC systems, which utilize

inverters to generate in phase AC waveform to feed into the power grid. Depending on the inverter

design the AC waveform may have spurious harmonics present.[15]

Large and sudden changes in load to generation ratio change do not immediately impact the

utility frequency due to the rotational inertia of the large generation systems. Instead it will cause

the line voltage to change proportional to the load until the generation can catch up. If the load

suddenly increases, caused for example by a large motor stall, grid voltage will experience a sharp

drop, known as a sag. Similarly a large load drop will cause an voltage increase, called a swell.

Voltage sags and swells propagate throughout the entire grid infrastructure, however the dynamics

of the power grid are quite complex, and hard to predict. For example a voltage sag on one

sub-transmission chain may manifest and as a voltage swell in another. Finally very fast changes

in load, such as short circuits, opening and closing of re-closers, and lightning strikes manifest

as voltage transients. Voltage transients are energetic short-lived swells on the order of a single

AC cycle, which can travel across the distribution grid. Transients may interfere with sensitive

grid connected equipment, as well as trigger protection equipment such as uninterpretable power

supplies, and other over-voltage protection devices. Transients, harmonic distortion, and RMS

fluctuations and their combinations make up the majority of power quality problems which affect

the voltage waveform in the grid connected devices. [3] All of these issues can cause power quality

problems, as will be discussed further in Section 1.4.

1.2 Edge computing approach to anomaly detection

Edge computing is an emergent field in distributed systems. Edge computing is a consequence of

ever decreasing power consumption of computational devices found on the sensor nodes, as well as

incremental improvements in battery technology. With ever-increasing computational capabilities
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in sensor networks, it becomes possible to process and store the acquired data on the device itself,

as opposed to the centralized sink. Thus the idea of edge computing leverages available computing

power of the sensor node to allow for smarter distributed sensing. Edge computing with respect to

remote sensing allows for several new approaches to anomaly detection.

Anomaly detection is a common topic across many disciplines and domains. In cyber-security

research, anomalous network traffic and program behavior is often indicative of malicious behavior.

In seismic monitoring, anomalies in ground vibrations may be precursors to an earthquake or a

volcano eruption. In observational astronomy, anomaly detection is used for detection of transient

events such as gamma ray bursts. Sensor networks are commonly tasked with anomaly detection

and must often act on them. Traditionally, stringent constraints on power consumption of battery

powered wireless sensor network nodes mean that low bandwidth and low complexity methods are

preferred. Furthermore, many sensor networks are often hindered by local noise, thus requiring

higher level filtering in order and in network processing to determine if an anomaly has occurred.

If the signal to noise of the local measurements is quite high this problem becomes trivial: one

simply collects all the distributed measurements if one or more of the measurements indicates an

anomaly. Unfortunately, in the real world such problems are rare and instead the distributed signal

is dominated by extraneous local noise. For example individual seismic sensors can’t distinguish

between a global anomaly such as an earthquake and local noise such as vibration caused by a

passing semi-truck.

The problem of global anomaly detection with distributed sensing has been thoroughly ex-

plored in self organizing wireless sensor networks. However, these approaches are insufficient in

the paradigm of edge computing. Edge computing relies on Internet for transport, and thus the

cost of communicating with the local sink and the local node is similar. Indeed in some cases it is

impossible to achieve node-to-node communication without an intermediary due to firewalls, and

other security mechanisms. In my research I will only consider approaches which rely on a sink

node to facilitate anomaly detection.

There are several solutions for dealing with the local noise problem in an Internet-enabled sensor

network. A naive solution is to simply record every distributed measurement to a centralized data

sink. This sink, as well as the infrastructure down stream of it has a view of the entire state of the

system and can thus detect anomalies using either real-time or batch processing. An alternative to

sending all of the distributed measurements to the sink is to let the individual sensors decide which

temporal regions of the measurement constitute an anomaly. This approach, called self triggering,

has a benefit of the reducing the bandwidth constraints for each sensor without the requirement

for two way communication between the sensor and the sink.
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1.3 Napali: hybrid edge computing for anomaly detection.

I propose a framework called Napali which combines the strengths of the previously mentioned

methods. In Napali, each sensor node maintains a two way communication channel with the sink,

as well as a temporal window containing all the recent data each device has collected. Each sensor’s

on board processing is used to extract features from the collected measurements, and only these

features, instead of the entire measurement set are forwarded to the sink for processing. The sink

has a low resolution view of the state of the entire sensor network. While this may not be enough

for rigorous anomaly analysis, properly feature extracted data from every node should be enough

to detect the occurrence of an anomaly. Finally if an anomaly is detected the sink will request high

resolution data from all of the affected devices and their neighbors.

Bandwidth
Efficiency
Detection

Efficiency

Computational
Requirement

1 2

3

Figure 1.1: Comparison of the three event detection methodology across three metrics. Methods
are as follows: naive method (2), self triggering (1), Napali, hybrid solution (3)

The naive method provides the best detection ability and the smallest node computation require-

ment. However, it does so at the cost of the largest bandwidth consumption. The self triggering

method has the lowest bandwidth consumption of the three. The disadvantage of this method

is twofold. First of all in order to maintain a high detection rate a reasonably low threshold for

anomalies has to be used. This may cause a large number of false positives due to local noise and

sensor noise. Secondly, global anomalies will often diminish in magnitude as a function of distance

from the epicenter, thus far removed sensor nodes may completely miss events. These low threshold

events may be invaluable for reconstructing the dynamic of the anomaly propagation, however they

will be missed by the detection algorithms.

Napali’s hybrid approach provides the opportunity for much better anomaly detection rate and

background noise rejection, by correlating the features that are computed on the sensor nodes.

Napali has moderate bandwidth consumption, however the bandwidth consumption is tunable

since the features can be computed for varied temporal windows length of which can be adjusted

in real time. Napali does requires the highest sensor node computing power, since not only does it

need to extract the triggering features from from raw data, it needs to maintain a buffer of sensor

measurements to send to the sink if an anomaly is detected.
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The downside of the Napali framework, is the requirement for two way communication between

the sink and the sensor node. In order to participate in event detection Napali sensors need to be

able to both send raw and feature extracted data, as well as receive the control signals from the

sink. In contrast, the naive and self triggered approaches only require a one way link to send the

raw data to the sink. As such, standalone devices can be retrofired to participate in distributed

event detection in the naive and self triggered approaches, while Napali requires custom devices

specifically tailored for cooperative event detection.

I claim that there are several benefits to the Napali method compared to the naive and self

triggered approaches.

1. Bandwidth usage is minimized: Instead of sending the entirety of raw data, only extracted

features are sent. This features will have a tiny fraction of the bandwidth requirement when

compared to raw waveforms. Furthermore, the temporal window which encompasses a single

feature can be adjusted in real time. Thus as soon as an anomalous behavior is observed in

a subset of sensors, this window can be adjusted for a finer grained feature extraction.

2. Effects of latency are minimized: Even at 1Msample/second at 16bits of resolution, the

memory requirement to store 5 minutes of raw waveform without compression are on the order

of 512MB, which is well within the realm of cheap single board computers. With compression

specifically suited to the signal of interest, the memory requirement can be reduced even

further. This gives the triggering stream sink plenty of time to respond to the anomalies in

the data and request raw waveform from the monitoring devices.

3. Sink processing requirements are minimized: Since most of the feature extraction is

already performed at the device level the triggering stream sink computational resources can

be minimized. With the advent of IOT, the computational capacity of the edge devices is

quickly growing. Napali exploits these resources, and thus minimizes the sink computational

requirements.

4. Sub-threshold data acquisition: The triggering stream sink makes the decision to acquire

raw waveform from sensor nodes. This allows researchers to collect data from devices which

were only mildly affected or not affected by the disturbance. This provides new possibilities

for investigation of disturbance propagation across the sensed area.

5. Power failure resiliency: In the case of the complete power failure or communication

blackout, if the monitoring device has a battery backup capability, each sensor has a record

of the entire raw waveform leading up to the power interruption. Prior to shutdown the

sensor node will transfer all of the raw data from the volatile memory to on-board permanent

storage. Once the power or communication channel is restored, select portions of the buffer

may be sent back to the data sink. This creates an additional layer of resiliency for the

anomaly detection network.
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6. Flexible Privacy: Anomalies which were only observed at a single point are most likely

local noise and pose little value for global state monitoring. It’s up to the user to decide how

to process disturbances which affect their sensor. For example user may choose to record a

full waveform, only certain features, or record nothing at all. Secondly, if the saturation of

the device is high enough only a subset of them would need to send a triggering stream for

event detection, while the rest will be used for acquiring raw waveform for small temporal

regions containing global events.

7. Temporal Locality: By exploiting the temporal locality it is possible to ascertain the

geographical extent of the anomaly with only coarse features. This allows for a simple robust

algorithm which may be deployed at the sink node for anomaly detection.

1.4 The problem of power quality

Power quality monitoring along with other smart grid domains is a field well suited for dis-

tributed sensor network monitoring.[14] [19] As the power grid moves from centralized generation

with a few centralized power plants to distributed generation with residential power production, a

distributed consumer level monitoring system becomes ever more important. Traditionally utilities

do not monitor the quality of power besides the consumption beyond the substation level. This is

due to the fact that the last opportunity that the utility has to regulate and filter the grid voltage in

the hierarchical power distribution is at the substation, or neighborhood level. This methodology is

unsustainable, as residential renewable energy production if not properly monitored and controlled

will have an adverse effect on the overall grid stability. Furthermore, lack of residential monitoring

may lead to dangerous conditions such as islanding, where an otherwise powered down grid may

have a small powered island sustained only by the unmonitored residential renewable generation.

Finally, residential power quality monitoring gives utility costumers an opportunity to evaluate the

quality of power delivered to their household. As consumer electronics are becoming more and more

complex, they become more sensitive to the power anomalies. Grid monitoring is traditionally the

responsibility of the utility, however in most cases utilities only have to disclose power interruptions

lasting several minutes. Small interruptions, and partial interruptions such as voltage sags, swells,

frequency fluctuations and transients will often go undisclosed by the utility and unnoticed by the

consumer, but may cause premature failure in grid connected electronic devices. It is in the best

interest of the consumers to monitor the quality of the power that is delivered to them, meanwhile

the same same monitoring system will also allows researchers and utilities to monitor the entirety

of smart grid.

Residential power quality monitoring presents a number of issues. First of all, it is difficult to

discern which side of the utility meter a power disturbance came from. Consider a voltage sag gen-

erated by a 1kW hot plate shown in Figure 1.2a. Since the output impedance of the power grid is
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(a) Voltage signal produced by a hotplate.
(b) Voltage signal produced by a desktop PC running
a complex task

(c) Line voltage recorded over 24 hours in a residential household with photovoltaic installation.

Figure 1.2: RMS voltage waveform generated form the consumer side of the meter under various
conditions. All waveform were recorded using the OPQ Box 2.

non-zero a high powered device can cause a significant voltage sag affecting every device connected

to the same circuit. Secondly, recoding the voltage waveform resulting from non linear load can

result in privacy leaks for the end user. Consider the voltage waveform produced by a PC running

a video game as shown in Figure 1.2b. Throughout the game loading process the power load varies

based on which components are in use. Furthermore, regions with CPU load, harddisk load and

video card load can be readily identified by measuring the resulting voltage sag. Recording these

event’s has an adverse effect on end-users privacy and offers no immediate benefit in studying grid

stability. Finally distributed power generation such as rooftop solar has significant effect on the

residential voltage waveform. Consider the voltage waveform shown in Figure 1.2c. This waveform

was recorded over 24 hours in a household with a rooftop photovoltaic installation. Similar to

the voltage sag case since the power grid impedance is non-zero residential power generation will

cause a voltage swell during peak hours of sunlight as evident by the waveform. Combined with

the global voltage sag during hours of peak demand (3pm) combined with the lack of PV produc-
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tion during that time, photovoltaics installations can result in a daily 10Vrms swing. Residential

power quality monitoring can be accomplished via a distributed sensor network made up of power

quality monitoring devices with high degree of penetration across the end points of a power grid.

Furthermore, in order to monitor the dynamics of the entire power grid via residential line voltage

monitoring it is imperative to monitor across multiple locations simultaneously. This combined

with temporal and spatial correlations of data produced by the sensors allows for identification

of grid wide anomalies without a high rate of false positives. Additionally, not all power quality

events affect the entire grid, due to the hierarchical structure of the power distribution. The final

requirement for grid-wide monitoring is a novel distributed event detection system.

1.5 Edge computing approach to power quality monitoring.

IEEE1159 standard describes the techniques for single location power quality monitoring. For

transient monitoring it suggests a sampling rate of at least 7680 samples/second, up to 1 Megasam-

ple/second. This implies that if a power quality event detection system relies on raw data from

all monitors it would do so at a very large bandwidth cost. At 20 Ksamples/second at 16bit per

samples a single monitoring device would generate 300Kb/second. Several thousand devices could

easily saturate at 1Gb link with no obvious benefit. Collecting and recording all of the raw waveform

data from residential power quality meters for batch processing presents some privacy concerns as

outlined above. On board event detection methodology allows the measurement devices to select

which temporal regions of measurements constitute an event. This is a perfect strategy from the

consumer’s perspective, since it would allow for recording of power quality information which di-

rectly impact their residence. As mentioned in Section 1.2, this method relies on a threshold based

approach where every device has a computes several metrics from the raw waveform and compares

then to preprogrammed threshold values. Metrics such as Vrms, fundamental frequency and THD

are easily adapted for single point power quality measurements. Temporal regions during which

these metrics surpass a threshold are considered by the device as a power quality event, and thus

are recorded.

The problem with the method outlined above is that grid-wide power quality events do not affect

the entire grid in the same way. For example due to the grids hierarchical structure a voltage sag

on one sub-circuit can manifest as as a sag of a different magnitude or even a swell on another.[9]

This may result in a situation where some of the monitoring devices will not consider a power

quality anomaly as an event, because it did not surpass the metric threshold, and simply ignore

it. From the research perspective, however, it is important to get raw data from all of the affected

devices not just the ones that were the most affected. This makes a hybrid centralized/decentralized

event acquisition strategy more attractive for distributed residential power quality monitoring. In

this scheme all monitoring devices use local processing resources to feature extract the incoming

waveforms while storing them locally for several minutes. A sink collects all of the extracted
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features and looks for anomalies which are present in the feature data stream which we will refer

to as triggering stream. If an anomaly is present in only a single device, it is highly probable that

the disturbance occurred in the residence. Depending on the user’s privacy preference, raw data

for a single device anomaly can be be recorded for later analysis, or in case of a highly privacy

conscious user, ignored. On the other hand if the triggering stream shows an anomaly temporally

collocated across multiple devices, the entire network or a subset of the network may be queried

for raw waveform data for a temporal region which corresponds to the disturbance in the triggering

stream.

The main disadvantage of this method is that while there are plenty of power quality event

detection methodologies for single location, there has been little development in the distributed

event detection methods and metrics. Two problems are quite similar, indeed one may use the

same metrics for distributed event detection as with the single point power quality monitoring.

However, it’s also important to consider temporal locality of anomalies detected across multiple

devices and effects of device synchronization. Power quality anomalies such as voltage sags and

transients will propagate through the transmission lines at the speed of light, however due to the

non-linear elements which make up the power-line junctions, a certain temporal spread in event

detection across multiple locations is expected. For large power grids such continental United

States grids, large frequency fluctuations propagate in a highly nonlinear ways. In these cases the

event propagation is limited by the inherent rotational inertia of the power generation systems,

and the speed at which the grid protection elements such as reclosers and circuit breakers operate.

Regardless, the closer local anomalies are detected in time, the more likely are they to be a result of

a gridwide event. Unfortunately, it is unfeasible to perfectly temporally synchronize the distributed

power quality monitors. While methods such as GPS can in principle provide synchronization of

up to 10ns jitter across a large geographical region, they require a line of sight to the sky, and add

a non-trivial cost to the bill of materials for every power quality meter. Furthermore, GPS is prone

to losing signal depending on atmospheric conditions, and can be very sensitive to fluctuations in

the power supply voltage, a critical time in power anomaly detection. An alternative to GPS is

Network Time Protocol. Network time protocol can provide timing synchronization on the order of

10ms across Internet, which is on the order of 1
2 of a grid cycle. NTP performance could be further

improved by using geographically close time servers which are themselves synchronized via GPS.

Consider a situation where two devices are located in household which experience a local 100ms

power quality disturbance every 10 minutes. Even with a 10ms synchronization jitter, it will take

on average 21.5 days before the two disturbances are observed within 20ms of each other. If a

third device is introduced, it is highly unlikely that all 3 would observe unrelated local anomalies

within 20ms of each other over the lifetime of the power quality monitoring network. This implies

that combination of temporal and threshold based correlation on the feature extraction data would

allow one to build a robust residential based power grid monitoring system which would yield a
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very low rate of false positives.

Power 
Production Facility

47kV 47kV

12kV 12kV 12kV 12kV

Lightning 
Strike

Residential Residential Residential Residential

Directly affected devices Indirectly affected devices

Residential

Figure 1.3: Power quality anomaly propagation example.

1.6 Thesis claim and evaluation

Today’s big data world is plagued with the issues of data cleaning and validation, even though

it’s being relied on for timely, accurate and actionable intelligence. With large ingress of un-

structured data these issues are unavoidable, and preprocessing will remain a large portion of the

analysis workload. However, in the case of sensor networks designed for a specific purpose, the

tasks of anomaly detection can be pushed to the edge of the network using the Napali method-

ology. The claim of this thesis is that Napali provides novel architecture that is both a feasible

solution to the problem of distributed power quality monitoring and which also provides signifi-

cant benefits over the two standard alternative architectures (all computation/storage at nodes, all

computation/storage at the sink).

To evaluate the feasibility of the Napali framework, I propose to implement it as part of the Open

Power Quality(OPQ) system and apply it to the problems of power quality monitoring. Combined

with higher level anomaly analysis, Napali provides important services for a Open Power Quality

power quality monitoring network. This network is made up of a group of monitoring devices as

well as a centralized data sink server. This system will be deployed for testing at the University

of Hawaii at Manoa campus, by deploying power quality monitors across at least 20 buildings on
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campus. The University of Hawaii at Manoa campus is a unique testbed for such a network, since

entire campus is isolated to its own microgrid, connected to the municipal Oahu grid via a 46kV

feeder. Furthermore, the University of Hawaii has deployed a set of smart power monitors at the

key positions in the grid, which can be used as a state of the art ground truth for evaluation of

OPQ performance.

The system relies on a custom residential power quality monitor called OPQ Box, designed

specifically for distributed monitoring using the Napali framework. Instead of performing local

analysis on the voltage waveform with the aim of PQ anomaly detection, or forwarding all the

recording measurements to the centralized sink, OPQ boxes computes a small subset of features

on the input voltage waveform. These features are then forwarded to the Napali framework’s

centralized sink which performs the anomaly detection on reduced data, while the raw waveform

is retained for a short time on the OPQ Box. If the sink determines that a possible anomaly has

occurred, a request is sent to the affected and nearby devices for raw data.

The goal of Napali is not to provide a low rate of false positives for a particular type of a

power quality disturbance. Indeed, once the raw data is acquired by the sink, filtering through the

potential anomalies is trivial using well established methods. Instead, the focus of my detection

system is balancing low bandwidth required for detection with the low rate of false negatives.

Furthermore, monitoring at the leaf edges relies on the hierarchical nature of the power grid in

order to ascertain the state of the entire power generation and delivery system. As noted in the

literature, power quality disturbances tend to propagate down the hierarchy as shown in Figure

1.3.

Consider a lightning strike on a hypothetical 12kV feeder line in a hierarchical power grid.

The directly affected devices will be the ones downstream from the disturbance. These devices

will experience the most severe effects, most notably transients, as they propagate throughput the

power delivery infrastructure. The indirectly affected devices will expedience a power anomaly

mainly attributed to the power production entities trying to compensate for the large disturbance

caused by the lightning strike. Thus, monitoring of the leaf edges of the power delivery system can

in principle provide insights into the disturbances that originate deep inside the power distribution

network.

The Open Power Quality system is designed to be a test bed for development of new power

quality detection and analysis algorithms. Its introduction will facilitate development of new tech-

niques and methods for studying power system, by utilizing the Napali framework as the main

anomaly detection methodology. To evaluate the benefits of this architecture, I will assess the data

collected by the OPQ network at the University of Hawaii in order to determine if the claimed

benefits of the architecture are observed in practice. The description of the evaluation processes

for the benefits described in Section 1.3 are summarized below.

1. Bandwidth usage is minimized: Bandwidth consumption of the OPQ system will be care-
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fully monitored, recorded and compared to the bandwidth required to transmit the equivalent

amount of raw data. A more detailed description of this evaluation can be found in Section

4.2.1.

2. Effects of latency are minimized: Latency limits of the triggering system will be exam-

ined. Since these are heavily dependent on the raw data storage ability of the OPQ Box,

latency effects will be tested under various amount of memory allocated for this task. A more

detailed description of this evaluation can be found in Section 4.2.3.

3. Temporal locality: Data acquired from the UH building level meters will be compared with

the data acquired via the Napali triggering framework. This will allow me to establish the

rate of false positives and negatives and evaluate the temporal locality triggering algorithm.

Furthermore, the single location events, which are normally rejected by Napali will also be

examined and compared to the data provided by the building power meters. A more detailed

description of this evaluation can be found in Section 4.2.4.

4. Sink processing requirements are minimized: Synthetic benchmarks will be carried

out on the sink node to determine the scalability of the triggering system. These scalability

metrics will be compared with a synthetic benchmark of running multiple copies of the OPQ

Box analysis software on the same node. This will allow me to compare the scalability of the

sink node in the case of sending the entirety of raw data stream versus the Napali frameworks

approach of only sending extracted metrics. A more detailed description of this evaluation

can be found in Section 4.2.2.

5. Sub-threshold data acquisition: Evaluation of the sub-threshold data acquisition will

performed in two ways. First, the triggering stream from the OPQ Boxes will be stored along

with the acquired raw data. The triggering stream can be used to compute which fraction of

devices would have self triggered if operating autonomously. Next the building level meters

self triggering capabilities, will be compared to the Napali, sub-threshold triggering in order

to compare Napali to a commercially deployed system. A more detailed description of this

evaluation can be found in Section 4.2.5.

Although power failure resiliency and flexible privacy are claimed benefits of the Napali architecture,

they will not be evaluated as part of this thesis research. Flexible privacy would require a much

larger deployment, and a user study, which is beyond the scope of this project. Furthermore the

power failure resilience of the Napali framework would require a significant development effort in

development of the battery management system. Since complete power failures are quite rare, there

is no guarantee that a single power outage would occur at the UH campus during the deployment.

The last claim of this dissertation is that the Napali architecture can be applied to other

domains. Once the Napali framework is fully characterized, and its strengths and weaknesses are
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well understood, I intend to perform an in-depth literature review of other domains which could

benefit from Napali-like approach to event detection. I will also characterize the kinds of design

changes to existing sensors that the Napali Framework will require in order to apply it to these

domains.
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CHAPTER 2
RELATED WORK

2.1 Edge computing

Projections performed by Forbes suggest that by 2025, more then 75 billion IOT devices will

be connected to the Internet.[1] As the devices at the edge become more computationally capable

and more numerous, it becomes imperative to share the computational load not only across the

cloud services, but across the devices themselves. Furthermore, a large portion of these devices,

such as home automation, do not require a connection to the cloud in the first place. Instead they

require a connection to the edge IOT hub, or need the cloud service only to establish or broker

communication with another IOT device. Edge computing is a subset of IOT research, which

concerns itself with distributing the computational load across the devices at the edge of the of the

network. [21]

Figure 2.1: Projected number of IOT devices worldwide.[1]

This change in computational strategy may seem inconsequential at first. However, upon deeper

reflection it becomes clear that this is a major paradigm shift which brings IOT closer to the sensor

network world it is often compared with. While pioneering work in the IOT always assumed a one or

two way communication between the IOT device and the cloud service, utilizing TCP/IP as an end-

to-end protocol, it is becoming clear that this approach is unsustainable, and is often undesirable.

This communication model has clear disadvantages in wasted communication, computation, and

privacy. Furthermore, the rigid computation communication model is not flexible enough to support

devices which are beyond the edge of the TCP/IP network without an AD-HOC routing. [6]
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The first attempt to address the bandwidth and latency issues arising with the widespread

IOT adoption came in form of content delivery networks (CDNs).[6] CDNs circumvent the generic

cloud information delivery problems by placing transparent caches geographically spread across the

application domain as shown in figure 2.2. When a user or an IOT device makes a request for on

object, this request is forwarded to the nearest CDN node for processing. If the node contains the

object in its cache it is immediately forwarded to the requestee. Otherwise a request for the object

is forwarded to the centralized cloud data store, and returned to the requesting device, as well as

placed in the local cache. This approach has the advantage of moving the data closer to the end

user, thus reducing latency, and taking advantage of the geographical locality. Another advantage

of this method is the added resiliency of the CDN architecture to a single point failure. If a local

cache node fails, its userbase, can be forwarded to another node, although incurring additional

latency. Additionally, if a centralized data store becomes unreachable, the local cache nodes can

to some extent mask it’s outage by forwarding the data available locally. This approach does have

some drawbacks. While it makes it easier to enable faster transactions regarding data, it is not

trivial to move application logic to the local cache nodes. Furthermore, CDN methodology, still

relies on a central mediator for device communication, even if the devices are located in the same

room.

Figure 2.2: Content delivery network architecture. As described in the Google pattent.[6]

In an attempt to support a more diverse IOT ecosystem, current research is focused on moving

the cloud service ever closer to the edge of the network. Since the majority of the IOT devices

are located withing one hop of the Internet, the next logical place to locate a content provider

is at the wireless basestation.[21] These servers, commonly referred to as cloudlets or fog servers,

are collocated with various wireless basestations, which allows them to provide a location specific

service to the user without using the Internet. This approach also provides uniform access and

simplifies intercommunication between a variety of devices, including those that don’t use TCP/IP.
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Unlike the localized cloud cache approach relied on by the CDNs, fog servers are built with the

notion of moving not only data but also the application logic to the edge of the network. To

facilitate inter-device communication between the devices using differing wireless protocols, fog

servers can no longer rely on TCP/IP routing. Instead, TCP/IP becomes yet another transfer

protocol along with Bluetooth, Zigbee, 3g etc, with routing between the devices implemented as a

software service.[25] A few use-cases of such technology are already found in industry. Examples

of these include airline/bus in-flight entertainment, and shopping mall directory apps. A block

diagram of this infrastructure is shown in figure 2.3. In the future, emerging technologies which are

sensitive to latency, such as virtual and augmented reality will benefit from fog computing, since

it’s inherently lower latency then the cloud counterparts.

Figure 2.3: Fog computing use in transportation. The bus cloudlet provides a cache for com-
mon data such as commuter schedules and traffic information, while routing other queries to the
Internet.[25]

With the architecture for low latency communication between the edge devices and the fog

provider established, the state of the art in edge computing research is focused on intelligent

sharing of the computational resources in the fog system. Edge servers generally have a few orders

more of computational capacity then the edge device, however, they service many such devices.

Additionally, due to the fickle nature of radio links connecting the edge device to the fog service,

the work sharing protocol must be able able to cope with link and packet loss. Finally, in the case

of battery powered devices, the energy cost of transmitting the computational job, and receiving its

result may exceed the cost of performing the computation locally. Finally, with mobile edge nodes,

such as smart phones, and smart cars, computational offloading algorithms must be able to handle

constant network reconfigurations as the edge nodes enter and leave the fog server geographical

area. A number of algorithms have been proposed for efficient and robust computational sharing

in fog environments. [17] [28] [29]

Napali fits in between the CDN and Fog server architectures. The power quality disturbances

are generally localized to a specific area, so a sink placement which covers a small geographical
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area are preferred in order to reduce latency and reduce unnecessary communication with the

centralized cloud location. Furthermore, sink driven measurement rate allows the OPQ Box to

dynamically scale the computational and communication overhead. Finally the event, classification

and analysis are similar to the computational offloading strategies currently under development in

the edge computing field.

2.2 Distributed Power Quality Monitoring

Power quality monitoring is a long established field in the smart grid domain. However, the vast

majority of research so far has focused on single point power quality monitoring.[23] Such research

has extremely useful applications in industry, since it allows one to ascertain the absolute quality

of the delivered power at a given location. However, since the power quality disturbances originate

both from local sources and gridwide disturbances, single point monitoring is not particularly useful

for smart grid research. Several projects have developed a distributed approach to power quality

monitoring, the most prominent being the FNet project and the Power Standard Lab PQube

deployment.

The FNet project designed, manufactured and deployed a Phase Measuremnt Unit (PMU),

across over 300 locations across the united states.[32] PMU devices plug into an outlet, and sample

the power line voltage at the rate of about 1.5kS/s. The sampling is disciplined by GPS, and as

such FNet devices are extremely sensitive to voltage frequency and phase angle. The precision of

the FNet devices is 0.5mHz for frequency and 0.02◦ for phase angle. Collected data is sent to

the collection service at 100ms intervals via the Ethernet connection. Using these devices FNet

was able to observe several large power disturbances in the US power grid. The robustness and

sensitivity afforded by the GPS receiver makes this project an excellent source of frequency data

across large geographical area, however, the sampling rate of 25 samples per grid cycle is far too

low to properly sample fast transients and sags. Furthermore, FNet provides no methodology for

acquiring raw data for event disturbances which it records.

Power Standards Lab (PSL) has been an industry leader in power quality monitoring, and has

authored several standards on the topic. Furthermore, PSL has developed and deployed a large

number of power quality monitors called PQube across the world. The exact number of deployed

devices is uncertain since a lot of the devices are deployed industrially and are not available to

the public. However PSL has several publicly available devices, as well as several PQ datasets

accessible for smart grid researchers. PQube devices are an industry standard for power quality

monitoring, sampling at 12.8kSps for both the voltage and current waveforms.[2] Each PQube

device is supplied with a NIST certificate of compliance and complies with the IEC 61000-4-7:2002

standard for PQ measurements. Incidentally, this standard was authored in part by the PSL staff.

Similarly to the FNet PMU, PQube devices are GPS disciplined, additionally the sampling is phase-

locked to the voltage waveform allowing for an even more precise metric extraction. Finally each
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PQube device is configurable with custom thresholds which allow it to record raw PQ event data

for the location it’s monitoring. PQube offers a centralized data collection option with flexible

communication schemes ranging from Ethernet to Cellular. Since PQube devices monitor current

in conjunction to voltage, its installation requires it to be placed into the electrical box of the

target, by a licensed electrician.[27] Furthermore, the GPS synchronization requires addition of

extra conduit to the electrical box to allow for an antenna. Finally, since the PQube devices are

designed for single location measurements, distributed event detection using the PQube network is

particularly difficult, with a lot of low magnitude gridwide events being incomplete or missing.

Unlike the single point monitoring solutions, the Napali framework is incapable of operating as

standalone PQ monitor without a cloud sink. Furthermore, even with the event detection sink, the

goal of Napali is to reject local anomalies in order to reduce the communication and computational

overhead. While not as sensitive as the PQube device, the deployment price per unit is two orders of

magnitude lower, while providing better sensitivity then the FNet PMU alternative, when running

with GPS. The ability of operating using NTP, with WIFI connectivity, means that the OPQ Box

deployment is much simpler then the FNet and PSL offering, without requirements of a clear view

of the sky or additional wiring for Ethernet and GPS antennas. Finally the Napali distributed event

detection system allows for acquisition of the entirety of the PQ disturbances including in locations

where the disturbance has been greatly attenuated by the electrical distance. Thus, Napali is able

to provide a more complete picture of the disturbance propagation throughout the smart grid.

2.3 Anomaly detection in Power Quality Monitoring Networks.

Anomaly detection in PQ domain remains an active topic of research. The goal of PQ event

detection is to isolate the temporal regions where the voltage or current waveform deviates from

the nominal by a given threshold. In some cases the aim is simply to notify a higher level control

system in realtime manner that a disturbance is taking place. In other cases, the goal is to acquire

the raw disturbance data for off-line analysis. Most of the detection methods rely on statistics and

thresholding in order to detect PQ disturbances. Most of the literature concerns itself with single

point detection, for purposes of protection of equipment downstream.[7][10] [22] Distributed power

quality projects will generally utilize single single point detection across multiple devices in order

to reconstruct gridwide propagation.[27]

With a wide deployment of smart meters, PQ researchers gain access to a networked platform

which is perfectly positioned for PQ monitoring.[8] The major issue for smart meter real time mon-

itoring is the bandwidth constraints. Smart meter deployment is envisioned to communicate via a

mesh network with a stationary or mobile base station used for data aggregation. As such the band-

width and connectivity is limited, thus requiring methodology which is capable of event detection

in such environments. Generalized local likelihood ratio detection is one method for overcoming

these limitations. This approach requires only a single bit to be forwarded from each smart meter
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indicating whether a disturbance is taking place or not. These bits are aggregated at the “master”

meter, and if their sum exceeds a threshold a higher level control system is notified of the ongoing

disturbance.[13] This approach is resilient to bandwidth limitations, and communication instability,

however tunning thresholds for each individual meter requires a significant manual effort.

Systems designed for distributed PQ event detection using custom meters are prevalent in

literature. A study at CERN utilized PQube devices with gapless recording which were later

analyzed off-line, in order to ascertain the propagation mechanics of PQ events.[9] In a realtime

domain Shang Li and Xiaodong Wang extended their work in [13] from smart meters to standalone

devices, again advocating for single bit statistical based triggering generated by asynchronous

meters.[12] Unfortunately their work has never been verified beyond simulation. The Transimeter

project utilized an analog hardware event detector comprised of a high pass filter and a comparator

for transient detection. These devices had two data paths for the voltage waveform, one to the

National Instruments DAC board, one to the hardware trigger circuit. If a trigger circuit detected

a transient, a flag was set on the NI DAC, which would in turn instruct the connected PC to send

the data to the central server.[5] Unfortunately, the lack of cooperative detection and an inflexible

trigger circuit makes this approach unappealing for modern power quality monitoring. Some of the

more exciting work in PQ detection is modeling the most efficient placement of PQ meters in order

to provide complete coverage for the power grid. [30] Another is using distributed detection for

localization of the event source.[18] [20]

Napali differs from the smart-meter approach in the use of WiFi for communication, which

greatly improves the communication constraints of the system. Since the OPQ Box is always

connected to the power grid it is monitoring, power concerns are minimal. This allows Napali to

implement more robust computational and communication strategies, not commonly possible with

smart meter PQ monitoring. Since the triggering stream is generated in software, it is possible to

switch the detection metrics without redesigning new hardware. Napali combines both cooperative

PQ event detection and PQ event acquisition which makes it useful for future PQ event localization,

and propagation research. [18] [20]
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CHAPTER 3
OPEN POWER QUALITY

Figure 3.1: Block diagram of the OPQ Power Quality monitoring system.

Open Power Quality (OPQ) power quality monitoring network utilizes residential power quality

meters, called OPQ Boxes, in order to detect anomalies in the electricity distribution across the

Oahu power grid. In addition to OPQ Boxes, the OPQ project utilizes cloud-based aggregation

services for power quality event detection, classification and display. The block diagram of the

OPQ network is shown in Figure 3.1 .

The major components of OPQ are:

• OPQ Box: an in-house designed, open source power quality meter that conforms to Napali

Framework requirements for the ”source”.

• Makai: data aggregation and event detection service that conforms to the Napali Framework

requirements for the ”sink”

• Mauka: event analysis and classification service.

The following sections describe the OPQ network components, services and protocols.

3.1 OPQ Box

OPQ Box is an in-house designed power quality meter which focuses on providing the means

for cheap, extensible and accurate residential power quality measurements. The block diagram of

the current revision of OPQ Box, OPQ Box2 is shown in the Figure 3.2a. A complete device in an

acrylic enclosure is shown in Figure 3.2b.

The power system of the OPQ box2 electrically isolates most of the device from the AC mains

power. An isolated AC-DC converter generates 5Vdc from the mains 120Vac. 5V is used to power the

Raspberry Pi, equipment connected to the expansion port, 3.3V regulators and voltage reference

and an isolated DC/DC converter. 3.3V is used to power the isolated end of the isolation amplifier

as well as the STM32F3 analog to digital converter/digital signal processor (ADC/DSP). The hot
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(a) OPQ Box2 Block Diagram. The power path is in
red, signal path is in green and the digital IO is in
black.

(b) OPQ Box2 in an acrylic enclosure.

Figure 3.2: (a) OPQ Box2 block diagram and (b) production OPQ box ready for deployment

side of the isolation amplifier is powered from the isolated DC/DC converter. This allows OPQ

box to function with the battery attached to the expansion port, so that it may retain data and

continue to operate during a power outage.

The analog signal path of the OPQ Box2 is complicated by the fact that the STM32F3

ADC/DSP is electrically isolated from the mains power. A previous iteration of the OPQ Box, OPQ

Box1, overcame this by employing small circuit board mount isolation transformer. Unfortunately

it was found that the frequency response of these transformers varied wildly between individuals,

thus incurring a lengthy calibration process for each device. Design on the OPQ Box2 solved this

issue by using an AMC1100 isolation amplifier as the isolation component. Internally AMC1100

consists of a single die comprised of a Σ∆ analog to digital and digital to analog converters. These

converters are separated by a silicon glass region on the integrated circuit which acts as a coupling

capacitor. Since the signal passes the isolation boundary as a Σ∆ encoded digital signal, it incurs

no distortion and no additional calibration is required. In order to match the dynamic range of

the AMC1100 the 120Vac is passed through the resistor divider to attenuate it to 120mVac. The

input and output of the isolation amplifier is filtered with a passive first order anti-aliasing filter.

Isolated signal is then digitized via a 16bit ADC of the STM32F3 DSP at 12KSps, which gives 200

data samples per grid cycle. Internally digitization process runs asynchronously with the respect

to the the DSP CPU, in order to minimize timing jitter. It was verified that the sampling jitter of

the ADC is less then 1us, however due to limited precision of equipment an exact figure was not

established. Data stream in its digital form is transfered to the Raspberry Pi single board computer

(SBC) for analysis.

Raspberry Pi SBC is responsible for signal analysis and anomaly detection. The Raspberry

Pi model used in OPQ Box is the Pi Zero W equipped with 256MB of main memory and a

single core 1GHz ARM11 CPU. Furthermore, Pi Zero W is equipped with an on-board 802.11n
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Figure 3.3: Block diagram of the OPQ Box 2 software stack.

WIFI transceiver, which removes the need for an external WIFI dongle used in previous OPQ

Box devices. The software stack of the Raspberry Pi aims to deliver a full featured power quality

analysis framework despite its rather limited hardware capabilities. A block diagram of the software

stack is shown in Figure 3.3. Digital data is transfered from the DSP to the Raspberry Pi via Serial

Peripheral Interface, with the Pi acting as the master and the DSP as a slave device. A hardware

interrupt line is used to inform Pi software that the DSP is ready for the data transfer. During the

initial design of the OPQ box 2 software, SPI data transfer was attempted in userland. However

due to the lack of support for DMA in the SPI kernel-to-userland bridge, a large portion of the

CPU time was spent facilitating data transfer, resulting in degraded analysis performance as well

as missed data samples. Current revision of the OPQ Box 2 software stack utilizes a kernel driver

for management of SPI bus. Internally OPQ driver maintains a ring buffer of 16 windows each

200 data samples in size. Upon the receiving the interrupt for the DSP, the CPU sets up the

DMA transfer and the DMA engine transfers a 200 sample window into the kernel memory without

CPU interaction. This scheme requires the CPU to only service 60 interrupts a second, with each

interrupt requiring on the order of 100 instructions, yielding the CPU utilization of less then 1% in

normal operation. Userland applications communicate with the kernel driver using a file descriptor,

where every write system call yields 200 samples of raw waveform. Thus the smallest window that

a userland application will process is a single AC cycle of the grid mains.

Userland component of the OPQ Box 2 software is a multi-threaded extensible analysis frame-

work called Triggering. The reader thread is responsible for transferring and accumulating data

from the kernel driver. The smallest data buffer that the Triggering application processes at any

given time is 10 grid cycles or 2k samples. Once the cycles are transfered to the userland and

timestamped, they are passed to the analysis thread for feature extraction, as well as to the Raw

Data Ring Buffer (RDRB). Since internally all data is addressed using shared pointers, during data

duplication no copying is required. RDRS is capable of buffering up to an hour of historic data

before it’s overwritten resulting in the RDBS maximum size of 100MB.

Analysis thread of the Triggering application performs feature extraction of the raw data win-

dows of 2000 samples. At the moment only two metrics are calculated:

• Fundamental frequency.
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• RMS Voltage.

Fundamental frequency is calculated by computing the zero crossings of the AC waveform. Since

a sinusoid will have two zero crossings for a full cycle the frequency can be calculated as:

f =
1

2
n

k=n∑
k=0

∆tk

(3.1)

(a) (b)

(c) (d)

Figure 3.4: Filters used for mains frequency calculation. (a) Downsampling filter gain. (b) Down-
sampling filter impulse response. (c) Lowpass filter gain. (d) Lowpass filter impulse response.

Where the ∆tk is the k’th time between two adjacent zero crossings. In order to improve the

accuracy of the frequency calculation one must first filter out as much of out of phase noise as

possible. Since our sampling rate is quite high (12kSps) and the fundamental frequency is quite

low (60Hz) it is very computationally expensive to perform this filtering in a single step. Instead

filtering is accomplished via a set of two finite impulse response (FIR) filters shown in Figure

3.4b and 3.4d. First the Down sampling filter is applied to the raw waveform, which results in

the frequency response shown in Figure 3.4a. As is evident by the plot the frequency content of
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the result is 0-600Hz, Thus it can be downsampled to the N
10 , or 200 samples without aliasing.

Next the low pass filter is applied to the downsampled waveform with the frequency response

shown in Figure 3.4c.This resulting frequency content is 0-100Hz, thus all of the higher frequency

harmonics and noise are removed. Finally the twice filtered downsampled waveform is used to

estimate the fundamental frequency according to the Equation 3.1. The zero crossings themselves

were calculated by using linear interpolation between two points which bracket the time axis.

In order to verify the error in our frequency measurement, a function generator (SIGLENT

SDG1025) was used to inject a 60Hz 120mVpp superimposed with 1% white noise into the input

of the AMC1100 anti-aliasing filter, bypassing the voltage divider. The resulting frequencies were

calculated and recorded by the OPQ Box 2 and histogramed as shown in Figure 3.5a. It was found

that the OPQ Box 2 overestimated the frequency by 300µHz with σ = 230µHz. All electrical

generation systems connected to the grid run synchronously with each other, meaning that while

small variations in voltage are common across locations, the fundamental frequency and phase must

remain strictly in sync. This effect is demonstrated in Figure 3.5b, which is a frequency fluctuation

event recorded on November 8 2017. While the two devices were separated by ten miles, their

frequency measurements track closely together.
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Figure 3.5: Filters used for mains frequency calculation. (a) Downsampling filter gain. (b) Down-
sampling filter impulse response. (c) Lowpass filter gain. (d) Lowpass filter impulse response.

Root mean square voltage (Vrms) in electrical power is the equivalent value of DC voltage which

would dissipate the same power in the resistive load. Vrms is a convenient measure for detecting

voltage sags and swells, since they result in nominally higher and lower computed value. For the
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sinusoidal signal Vrms can be calculated from the peak to peak value (Vpp) as:

Vrms =
Vpp

2
√

2
(3.2)

It is common for multimeter to employ the equation above for computing Vrms. However this

equation will only work for a perfect sinusoid, and thus does not result in a suitable metric for

identifying power quality disturbances. Instead OPQ Box 2 computes Vrms as follows:

Vrms =

√√√√ 1

n

k=n∑
k=0

V 2
k (3.3)

Similarly to the frequency calculation OPQ Box 2 will use a 10 cycle window for a single Vrms

calculation, however unlike the frequency calculation the input is not filtered a priori. An example

of a power quality disturbance which exhibits low Vrms is shown in Figure 3.6a and 3.6b. These

disturbances are the result of a lighting strike recorded by two OPQ Box 2 devices on Nov 1, 2017.
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Figure 3.6: A lightning strike recorded by two OPQ Box 2 devices separated by 10 miles. (a) A
lightning strike manifested as Vrms dip which lated 11 cycles. (b) As a consequence of using NTP
these devices have 1

2 cycle mismatch in reported timestamps.

Computed fundamental frequency and Vrms are transmitted to the Makai service for aggre-

gation. Data transmission is handled using 0MQ software stack with Curve25519 elliptic curve

encryption. Each device holds a unique of private and public keys, as well as the servers public

key, allowing both the Makai service and the OPQ Box 2 to verify it’s peer. Internally metrics

transmission uses 0MQ’s PUB/SUB protocol. This protocol is a publish subscribe one to many

topology, with each message containing the topic, and a payload. Additionally 0MQ pub-sub topol-

ogy allows for multiple sub peers with subscriptions forwarder to the publisher automatically via

a side channel. This allows for the aggregation service to be spread across multiple nodes, with
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minimal network overhead.

If the aggregation service determines that an anomaly has occurred, it is able to request raw

waveform from the OPQ Box 2 RDRB via a separate 0MQ pub sub channel. If the RDRB buffer

contains data for the requested temporal range, OPQ Box 2 will send the available data to the

aggregation service via a push pull 0MQ channel. Protobuf message serialization is used to encode

messages across the OPQ ecosystem.

In order to make a distributed measurement, all of the OPQ Boxes on the OPQ network

need to maintain an accurate time reference. Time synchronization across multiple OPQ Boxes is

accomplished using the Network Time Protocol. The expansion port of the OPQ Box 2 supports

a GPS receiver, however using it is detrimental to the OPQ Box 2 utility. GPS receivers require

line of sight to the sky, and since the with out on-board real-time clock, every power interruption

requires a GPS cold start. NTP performance has been verified against GPS resulting in time error

of 8ms± 5ms which is typical for NTP running over the Internet with a close by NTP server. This

error is visualized in a Figure 3.6b. With a large coincidental Vpp drop across two devices, a 7ms

phase error is clearly visible.

During the evaluation phase of the OPQ Box a new metric based on wavelet decomposition

will be developed for detection of transients. This will allow the OPQ Box to detect slow voltage

fluctuations using Vrms, and fast changes using the new wavelet metric.

3.2 OPQ Makai

OPQ Makai implements the Napali Framework requirements for a “sink”. It is a distributed

extensible microservice framework responsible for receiving the triggering stream from the OPQ

Boxes, locating anomalous temporal regions and requesting raw waveform for the anomalous time

ranges. As evident from the block diagram shown in Figure 3.7, Makai consists of three major

components: Acquisition Broker, Triggering Broker, and the Acquisition Service.

3.2.1 Triggering Broker

The triggering Broker is perhaps the simplest component of the OPQ Makai system. The

triggering stream generated by the OPQ Boxes is encrypted to preserve users privacy. In order to

minimize the CPU time spent decrypting the data across multiple OPQ services, the Triggering

Broker is used to decrypt the data and send clear text measurements across the rest of the OPQ

ecosystem. Triggering Broker uses the 0mq sub socket to receive data form OPQ Boxes, and send,

it via a pup socket to any connected client. Another potential role of the Triggering Broker is

load balancing. Since the 0MQ pub/sub sockets are subscription based, services connecting to the

triggering broker can selectively receive measurements only from OPQ Boxes they are interested

in.
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Figure 3.7: Block diagram of the OPQ Makai.

3.2.2 Acquisition Broker

The Acquisiton Broker manages the two way communication between the OPQ Boxes and the

rest of the cloud infrastructure. Unlike the triggering stream which originates from the OPQ Box,

two way communication is always initiated by the cloud services. Two way communication is

realized via a command response interface, where the OPQ service initiates the communication by

sending in clear text command to the Acquisition Broker, which then forwards it in the encrypted

form to the appropriate OPQ Boxes. There are three command types which can be handled by the

Acquisition Broker:

• (PING) Ping: The ping command is broadcast periodically across all of the OPQ Boxes, in

order to monitor the health of the OPQ network. The OPQ Box response to this command

contains diagnostic information, such as the timestamp of the last event requested, ip address

and the name and strength of the WIFI network the OPQ Box is connected to.

• (CMW) Change measurement window: This command allows to vary how often a

triggering stream message is generated and delivered to the triggering broker. This is accom-

plished by varying the length of the temporal window used to derive the triggering metrics.

This allows the OPQ system to analyze a finer grained measurements if a potential anomaly

is taking place.

• (RD) Send raw data: This command instructs the OPQ Box to send data from the its

raw data buffer to the cloud.

The last command in particular is unique, because its response is trapped by the Acquisition

Broker, as opposed to being passed to the agent which initiated communication. In this case the

raw data is serialized and stored in the Mongo database. Furthermore, the Acquisition Broker

notifies all connected agents that a new anomaly has been recorded via a 0mq pub message.
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3.2.3 Acquisition Service

The Acquisition Service middleware resides in between the Triggering and Acquisition Brokers.

It processes the triggering stream and manipulates it using the CMW command and if an anomaly

is suspected requests raw data from boxes via the RD command. The Acquisition Service app

itself does not perform any analysis of the triggering stream. Instead it provides a loadable plugin

interface which allows for a runtime hotplugable analysis. Since the OPQ Makai core is written

in the Rust programing language, the loadable object interface supports supports any programing

language with LLVM bindings. As such OPQ Makai plugins can be developed in C/C++, Rust,

or even Lisp. Currently three plugins are implemented:

• Print Plugin: Prints the triggering stream to the stdout for debugging purposes.

• Ketos: A Lisp interpreter built on top of the LLVM for manipulating/debugging the trig-

gering stream.

• Threshold: This plugin monitors the triggering stream, while looking for metrics which

exceed the user defined thresholds. If the threshold is crossed, data from all of the OPQ

Boxes is requested for the offending time interval via the RD command.

Future revisions of Acquisition Service will likely include a Python interpreter plugin, however

due to the persistent global state in the Python interpreter only a single Python instance can run

in the given address space.

3.3 OPQ Mauka

OPQ Mauka service is responsible for higher level classification and filtering of the anomalies

generated by the OPQ Makai. Since anomalies generation only relies on the triggering stream

features and not raw data, OPQ Makai is not able to ascertain if the anomaly is an actual power

quality event, event type, or its severity. OPQ Mauka on the other hand operates on the raw data,

thus it is able to perform high level analysis to meet industry standards for vent classification. The

block diagram of the OPQ Mauka is shown in 3.8.

Currently OPQ Mauka supports the following classification strategies:

• ITIC Power acceptability curve used to classify short term voltage sags.

• IEEE 1159 Voltage Voltage classification based on the IEEE 1159 power quality standard.

• Brownout Detection Classification of medium to long term voltage sags.

• Total Harmonic distortion Classification of events via harmonic analysis.
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Figure 3.8: Block diagram of the OPQ Mauka.

Once the anomaly is classified by OPQ Mauka, and the power quality characteristics are con-

firmed, it may be aggregated with other anomalies to form a disturbance. Disturbances are com-

posed of raw box data, analysis results as well as expert annotations and other metadata.

3.4 OPQ View

OPQ View is the primary user interface to the OPQ ecosystem. View is written in JavaScript

using the Meteor framework, and provides a robust and easy to use interface to the OPQ Box

triggering stream, Makai triggering anomalies, and to the Mauka PQ disturbances. Furthermore,

View provides an administration interface for initial setup and maintenance of the OPQ devices,

and services. Finally OPQ View monitors the health of the OPQ components, keeping track of the

individual box uptimes, and component failures. A screenshot of the recent OPQ View build is

shown in Figure 3.9
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Figure 3.9: Screenshot of a recent OPQ View build.
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CHAPTER 4
EVALUATION

Validation of Napali hinges on the validation of performance of the OPQ Boxes. Some of the

detection capability of the OPQ Boxes has already been characterized as shown in the previous

section, however transient response and the Vrms response are yet to be confirmed. Once the

OPQ Box sensitivity has been characterized, the detection capability of Makai system must be

crosschecked. First synthetic triggering streams will be injected into Makai. Next the full system

will be deployed at the University of Hawaii Manoa for in-situ validation.

4.1 OPQ Box Validation.

So far only the frequency sensitivity of the OPQ Box has been validated empirically. The

transient and as well as Vrms response characterization will first be performed using synthetic

data. Robust methods for generating power quality events are present in literature, and thus

no new research for single device validation is required.[11][26] Next once the DSP software is

characterized, synthetic PQ data will be loaded into a SDG1025 signal generator, and fed into the

OPQ Box hardware. Any discrepancy between the DSP, and hardware-in-the-loop characterization

will be noted and analyzed. The main characteristics to be validated are as follows:

• DC response: Accuracy of the OPQ Box in measurement of a DC voltage.

• Vrms response: Accuracy of the OPQ Box in measurement of a small changes in the amplitude

of AC waveform.

• THD response: Accuracy of the OPQ Box in measurements of small harmonics mixed with

a large fundamental AC waveform.

• Transient response: Validating the response of the OPQ Box metrics to various transients.

These tests will provide a baseline for the detection capabilities of the Napali system, and result in

a publication regarding the OPQ Box detection capabilities.

4.2 Napali Validation.

In order to validate the OPQ system as a whole, it will be deployed across the University of

Hawaii Manoa campus (UH). This location is ideal because it is a relatively isolated microgrid

connected to the Oahu powergrid only via a single 46kV feeder as shown in Figure 4.1. Another

advantage of the UH campus is the high number of smart meters deployed across various levels of
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the power delivery infrastructure. While these meters are mainly geared towards monitoring power

consumption they do have some power quality monitoring capabilities. Data provided from these

meters can be used in two distinct applications. First of all, this data can be used to pinpoint

the sections of the University of Hawaii power grid which experience a higher likelihood of power

quality disturbances. These portions of the grid will have a higher spacial density of OPQ Boxes.

Secondly, data from the campus deployed meters can be used as ground truth for comparison

against the measurements, and analysis performed by the OPQ project. The location of smart

meters in the grid topology is shown in figure 4.1 as the M nodes. As evident by the meter location

none of them are monitoring the consumer level power and mainly focus on the higher voltage

power delivery. This placement is evidenced from the smart meter role as a consumption monitor,

and thus the deployment of the OPQ Boxes at the residential level will compliment the current

power quality monitoring capabilities without introducing redundancies. Finally, the University of

Hawaii power grid is supplying a highly diverse infrastructure. Beyond the traditional residential

equipment such as computers and consumer grade electronics, the UH power grid powers scientific

and laboratory equipment, machine shops, and server farms. All of these elements have varying

requirements/tolerances for power quality anomalies as well as different levels of power quality

“pollution”. Furthermore, some of the electricity consumers in the UH campus are entirely unique.

For example, the free electron laser located in the Watanabe Hall is one of the only free electron

lasers in the world, and the impact/sensitivity of power quality on the instrument are completely

unstudied.

M

46kV 12.4kV 480V

M

HVAC

120V

Instrumentation

OPQBox

Consumer Equipment

HECO Subgrid Building Consumer

Figure 4.1: University of Hawaii at Manoa power delivery infrastructure.

There are 74 smart meters deployed across the UH campus. These meters measure the fun-

damental frequency Vrms, power consumption, reactive power, and power factor. Data from these

meters will be cross-referenced with the Napali detection system in order to ascertain it’s benefits.

Validations of the benefits of the Napali framework will follow the framework described in Section

1.6. Here we examine the analysis required to complete each claim in detail.
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4.2.1 Napali Bandwidth usage

In order to analytically compute the bandwidth savings of the Napali compared to a system

which sends all the data to the sink, I will keep track of the amount of bandwidth the Napali

monitoring system consumed during its deployment on UH campus. This will in turn be compared

to the bandwidth required by the OPQ Boxes if they were sending the entirety of the data to

the sink, and establish the bandwidth efficiency of the Napali framework. In order to monitor the

bandwidth of the system in-situ, an iptables bandwidth accounting will be enabled on the sink node.

With the accounting enabled, I will be able to extract the exact amount of bytes transfered by the

Napali framework during the deployment period. Since the sampling rate of the OPQ Box is well

characterized, and the number of OPQ Boxes is fixed, it is trivial to calculate the amount of raw

data generated by the OPQ network during any time period. In order to make this comparison fair,

the raw data bandwidth will be scaled by the compression ratio of the state of the art compression

algorithm specifically designed for power quality measurements.[31]

Operating at 12kSps, OPQ Box produces raw data at 24KB/s. With state of the art compression

operating at 90% compression ratio and a 5% overhead of TCP/IP and meta-data, one can expect

a 3KB/s stream of raw data for each OPQ box if it were to send the entirety of it to the sink. In

synthetic experiments, under steady state conditions, OPQ Box consumes 0.5KB/s of bandwidth

sending metrics to the Makai. However, this figure does not take into account sending the raw

data samples in case an event is detected. The result of bandwidth consumption evaluation will

provide a comparison of the bandwidth consumption by Napali methodology of sending metrics

and temporal raw data windows of interest compared to sending the entirety of raw data to the

sink.

4.2.2 Sink processing requirement under the Napali Framework

In order to evaluate the scalability of the sink node under the Napali framework, synthetic data

containing a small amount of distributed events will be injected into the Makai triggering system.

While the synthetic data for a single point PQ disturbance is easily generated, distributed PQ

event generation is not well understood. However there is some literature concerning power fault

propagation and localization. [18] [20] The main takeaway from these authors is the energy and

amplitude of the event diminishes with electrical distance from the source. As such, by generating

a single point PQ event as described in [11][26], and linearly scaling it based on the simulated

electrical distance from the source, a distributed PQ event ensemble can be generated. These

events will be ran through the simulated OPQ Box DSP stack and the extracted metrics will be

propagated to the Makai aggregation sink. The number of simulated OPQ Box devices that can be

supported on a single node will be recorded, and will provide the baseline for the Makai sink node

capabilities. Next, the same dataset will be processed on the same node using simulated OPQ Box

software stacks. The amount of concurrent processes which are able to keep up with the targeted
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sampling rate of 12kS/s will be determined and recorded, and compared to the amount of devices

which can be supported by Makai.

The result of this evaluation will provide a scalability metric for the Napai framework for a

single sink node. There are independent metrics which will be presented. First, the number of OPQ

Boxes which can reliably send metrics to a single Makai instance for processing will be established.

This number is expected to be quite high since the bandwidth and computational requirements

for processing the triggering stream are quite low. Second, the number of OPQ Boxes, that can

experience and reliably send an event to Makai at the same time will be established. The bandwidth

requirement for raw data acquisition is significantly higher then the triggering stream, however there

is no computation involved in storing raw data frames. Both of these metrics will be compared to

the scalability of performing the entirety of processing on the sink node.

4.2.3 Effects of latency in the Napali framework

The latency of Napali triggering system has a significant impact on its ability to read out com-

plete raw data events. Using generated distributed events as a baseline, I will be able to tune

the threshold and temporal requirements for Makai detection algorithms. Furthermore, temporal,

spacial, and amplitude noise will be injected into the generated datasets, to simulate various un-

certainties with regards to data collection, such as local noise, and NTP offset errors. Taking into

the account the detection latency of Makai, if some of the requested data is no longer available

on the OPQ Box, only a partial time window will be returned. These events will be marked as

incomplete and their fraction as compared to the total number of events recorded will be used to

establish the latency tolerance of the Napali framework. Synthetic benchmarks will be carried out

to establish the latency that the Napali system can incur without losing a portion of the event.

Since this is highly dependent on the amount of storage allocated for the RDRB, these experiments

will be carried out with various RDRB settings.

Because OPQ Boxes operate using public University of Hawaii WIFI, the latency figures for

data transmission are expected to be very dynamic. In situations with large network contention,

greater then 100ms one way packet latency can be expected. This latency is exacerbated since at

least three separate communication steps are required before raw data is received by Makai. First

the metric has to be sent to Makai, next if Makai detects an event, a data request needs to be sent

to the affected boxes. Finally boxes will forward raw data to the Makai sink. I expect that with

RDRB capacity of storing 5 seconds of raw data, no raw data events of 1s or shorter will be missed.

This figure allows for 1 second of transfer latency, 3 seconds of Makai analysis latency, and leaves 1

second of data in RDRB for readout. However, these figures can only be validated in a real world

situations.
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4.2.4 Temporal locality triggering of the Napali framework

Once the OPQ Box is fully validated and the Makai detection thresholds are tuned using

synthetic datasets, the Napali system will be fully deployed at the University of Hawaii at Manoa.

Every time the Napali detects an event, both OPQ Boxes and building meters will be queried

for data. While it may be unfeasible to query raw data from the UH metering infrastructure,

metrics are readily available. This data will be used to ascertain the proportion of false positive

events detected by Napali. Additionally, the internal single point fault detection mechanism of

the UH power meters will be used in conjunction with the events detected by Napali to measure

the rate of false negative events. Both the false negative and false positive measurements will be

used to ascertain the detection efficient of the Napali framework. This analysis will also include an

evaluation of Napali’s ability to reject single point anomalies. For a portion of OPQ deployment,

every event triggered by a single device will be captured. These events will be analyzed in order to

determine if a gridwide anomaly was incorrectly classified as a single point disturbance.

The goal of Napali is not to to provide a zero false positive rate. Once raw data is stored, higher

level processing can further filter and classify it using more computationally expensive techniques.

As long as the bandwidth consumption of Napali compares favorably to sending the entirety of raw

data to the sink, any rate of false positives can be tolerated. False negatives on the other hand are

the primary metric subject to optimization. Ideally a zero rate of false positives would be expected,

however as with any real-world system I do not expect that to be the case. This evaluation will

determine the triggering efficiency of the Napali framework when compared to the detection ability

of a commercially available system.

4.2.5 Sub-threshold Data Acquisition

The Napali methodology will be compared with the single point anomaly detection approach.

In order to do that I will compare the extent to which sub-threshold events are missed by the UH

metering infrastructure. In a large distributed event, if a portion of events are not detected by the

UH meter’s single point detection, but picked up by the Napali framework, these events will be

flagged and analyzed for their merit. This will in turn provide a metric of distributed detection

ability of the Napali framework compared to commercial system. Furthermore, for a portion of

the deployment the triggering stream from the OPQ Boxes will be stored along with the acquired

raw data. The triggering stream can be used to compute which fraction of devices would have

self triggered if operating autonomously. This will provide the baseline for sub-threshold triggering

efficiency of the Napali system, with respect to the single point detection ability of the OPQ Box.

This evaluation will compare Napali performance to the single point detection mechanisms

currently in deployment. I expect that Napali will outperform these strategies, and provide a

more complete picture of gridwide anomalies as they propagate through the UH power grid. It is

possible that no sub-threshold events will be recorded during the UH deployment. UH campus is
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quite small, perhaps too small for an anomaly in one building not to impact the rest of campus. In

this case the sub-threshold data acquisition will remain an open topic for future work and a larger

geographical deployment. Regardless, as long as I am be able to validate the single point anomaly

rejection ability of Napali as described in Section 4.2.4, I will be able to conclude that Napali has a

distinct advantage over single point detection methods. Single point anomalies are not important

in smart grid monitoring, since they originate from the consumers side of the meter, and should be

ignored. In fact, recording these events may be detrimental to the privacy of the end-user, since it

may give clues on their activities as shown in Figure 1.2 a and b. However since privacy implication

of power quality monitoring are outside the scope of this project, this study will remain as a point

of future work.

4.3 Napali Framework in Other Domains

The work outlined above will allow me to characterize the benefits and drawbacks of the Napali

architecture. Armed with this knowledge I intend to examine the examine the possibility of using

a similar architecture in other domains. The Napali approach could prove useful in general sensor

network design, as well as IOT and other domains which rely on anomaly detection. This con-

tribution will involve an additional literature review of anomaly detection systems, and proposals

to integrate Napali-like methodology to improve their efficiency and reduce their bandwidth con-

sumptions. It will also include a discussion of hardware design changes required to existing sensors

in these other domains in order to support the Napali framework.

4.4 Schedule

Bellow is the time-line describing the major research activities leading up to my defense.

Activity Start Date End Date

OPQ Box 2 Validation October 1st November 31st

Makai Validation October 15 1st November 30th

Data Collection December 1st TBD

OPQ Box 2 Instrumentation paper January 1st February 1st

Data Analysis February 1st March 1st

Introduction Dissertation Chapter March 1st March 15th

Literature Review Dissertation Chapter March 15th April 1st

Experimental Design Dissertation Chapter April 1st April 15th

Analysis Dissertation Chapter April 15th May 15th

Conclusions Dissertation Chapter May 15th June 15th

36



BIBLIOGRAPHY

[1] Iot market predicted to double by 2021, reaching $520b. Accessed: 2018-09-30.

[2] Pqube specifications. Accessed: 2018-09-30.

[3] Ieee recommended practice for monitoring electric power quality. IEEE Std 1159-2009 (Revi-

sion of IEEE Std 1159-1995), pages c1–81, June 2009.

[4] Frede Blaabjerg, Remus Teodorescu, Marco Liserre, and Adrian V Timbus. Overview of control

and grid synchronization for distributed power generation systems. IEEE Transactions on

industrial electronics, 53(5):1398–1409, 2006.

[5] P Daponte, M Di Penta, and G Mercurio. Transientmeter: A distributed measurement system

for power quality monitoring. IEEE Transactions on Power Delivery, 19(2):456–463, 2004.

[6] Joshua D Gagliardi and Timothy S Munger. Content delivery network, June 14 2011. US

Patent 7,962,580.

[7] Irene YH Gu, Nichlas Ernberg, Emmanouil Styvaktakis, and Math HJ Bollen. A statistical-

based sequential method for fast online detection of fault-induced voltage dips. IEEE Trans-

actions on Power Delivery, 19(2):497–504, 2004.
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