
LAHA: A FRAMEWORK FOR ADAPTIVE OPTIMIZATION OF DISTRIBUTED
SENSOR FRAMEWORKS

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

MAY 2020

By

Anthony J. Christe

Dissertation Committee:

Philip Johnson, Chairperson
Lipyeow Lim
Dan Suthers

Peter Sadowski
Milton Garces

Keywords: distributed, sensors, management, adaptive, optimizing, predictive

Copyright c© 2020 by

Anthony J. Christe

ii

To my father, Raymond, if only you could see me now. To my wife, Christine, thank you for

your everlasting support. To my mother, Sharon, I told you I would graduate eventually.

iii

ACKNOWLEDGMENTS

I would like to thank my committee for providing me the opportunity to perform the research out-

lined in this dissertation. I would like to thank Philip for the endless hours of editing, wordsmithing,

and inspiration. I would like to thank Milton for the invaluable lessons on navigating the Ph.D.

process. This work was supported in part by the Consortium for Verification Technology under

the Department of Energy National Nuclear Security Administration Award No. DE-NA0002534.

Without a dedicated team of support, this dissertation would have never come to fruition.

iv

ABSTRACT

Distributed Sensor Networks (DSNs) face a myriad of technical challenges. This dissertation ex-

amines two important DSN challenges.

One problem is converting “primitive” sensor data into actionable products and insights. For

example, a DSN for power quality (PQ) might gather primitive data in the form of raw voltage

waveforms and produce actionable insights in the form of the ability to predict when PQ events are

going to occur by observing cyclical data. For another example, a DSN for infrasound might gather

primitive data in the form of microphone counts and produce actionable insight in the form of

determining what, when, and where the signal came from. To make progress towards this problem,

DSNs typically implement one or more of the following strategies: detecting signals in the primitive

data (deciding if something is there), classification of signals from primitive data (deciding what

is there), and localization of signals (when and from where did the signals come). Further, DSNs

make progress towards this problem by forming relationships between primitive data by finding

correlations between spatial attributes, temporal attributes, and by associating metadata with

primitive data to provide contextual information not collected by the DSN. These strategies can

be employed recursively. As an example, the result of aggregating typed primitive data provides

a new higher level of typed data which contains more context than the data from which is was

derived from. This new typed data can itself be aggregated into new, higher level types and also

participate in relationships.

A second important challenge is managing data volume. Most DSNs produce large amounts

of (increasingly multimodal) primitive data, of which only a tiny fraction (the signals) is actually

interesting and useful. The DSN can utilize one of two strategies: keep all of the information and

primitive data forever, or employ some sort of strategy for systematically discarding (hopefully

uninteresting and not useful) data. As sensor networks scale in size, the first strategy becomes

unfeasible. Therefore, DSNs must find and implement a strategy for managing large amounts of

sensor data. The difficult part is finding an effective and efficient strategy deciding what data is

interesting and must be kept and what data to discard.

This dissertation investigates the design, implementation, and evaluation of the Laha frame-

work, which provides new insight into both of these problems. First, the Laha framework provides

a multi-leveled representation for structuring and processing DSN data. The structure and process-

ing at each level is designed with the explicit goal of turning low-level data into actionable insights.

Second, each level in the framework implements a “time-to-live” (TTL) strategy for data within

the level. This strategy states that data must either “progress” upwards through the levels towards

more abstract, useful representations within a fixed time window, or be discarded and lost forever.

The TTL strategy is useful because when implemented, it allows DSN designers to calculate upper

bounds on data storage at each level of the framework and supports graceful degradation of DSN

v

performance.

There are several smaller, but still important problems that exist within the context of these

two larger problems. Examples of the smaller problems that Laha hopes to overcome in transit to

the larger goals include optimization of triggering, detection, and classification, building a model of

sensing field topology, optimizing sensor energy use, optimizing bandwidth, and providing predictive

analytics for DSNs.

Laha provides four contributions to the area of DSNs. First, the Laha design, a novel abstract

distributed sensor network that provides useful properties relating to data management. Second, an

evaluation of the Laha abstract framework through the deployment of two Laha-compliant reference

implementations, validated data collection, and several experiments that are used to either confirm

or deny the benefits touted by Laha. Third, two Laha-compliant reference implementations, OPQ

and Lokahi, which can be used to form DSNs for the collection of distributed power quality signals

and the distributed collection of infrasound signals. Fourth, a set of implications for modern

distributed sensor networks as a result of the evaluation of Laha.

The major claim of this dissertation is that the Laha Framework provides a generally useful

representation for real-time high-volume DSNs that address several major issues that modern DSNs

face.

vi

TABLE OF CONTENTS

Acknowledgments . iv

Abstract . v

List of Tables . xii

List of Figures . xvi

1 Introduction . 1

1.1 Converting Sensor Data into Actionable Insights . 2

1.2 Big Data Management in DSNs . 2

1.3 Traditional Approaches to DSN Optimization . 3

1.4 Laha: An Abstract Framework for Adaptively Optimizing DSNs 4

1.5 Claims of Laha Abstract Framework . 8

1.5.1 Generality of the Laha Framework . 8

1.5.2 Ability to Convert Primitive Data into Actionable Insights 8

1.5.3 Tiered Big Data Management . 8

1.5.4 Tertiary Goals and Claims . 9

1.6 Contributions of Laha . 9

1.7 Organization of this Dissertation . 10

2 Related Work . 11

2.1 Big Data and Distributed Sensor Networks . 11

2.2 Distributed Sensor Networks and Big Data Management 12

2.3 Distributed Sensor Networks and Predictive Analytics and Forecasting 13

2.4 Determining Topology and Localization . 15

vii

2.5 Optimizations for Triggering . 16

3 System Design . 17

3.1 Big Data Management in Laha . 17

3.1.1 Instantaneous Measurements Level . 18

3.1.2 Aggregate Measurements Level . 18

3.1.3 Detections Level . 19

3.1.4 Incidents Level . 19

3.1.5 Phenomena Level . 20

3.2 Phenomena: Providing Adaptive Optimizations in Laha 20

3.2.1 Annotation Phenomena . 21

3.2.2 Locality Phenomena . 21

3.2.3 Periodic Phenomena . 23

3.2.4 Similarity Phenomena . 24

3.2.5 Future Phenomena . 24

3.3 Laha Actors: Acting on the Laha Data Model . 25

3.3.1 Actor Constraints . 26

3.4 OPQ: A Laha-compliant Power Quality DSN . 26

3.4.1 OPQ: Boxes . 27

3.4.2 OPQ: Makai . 27

3.4.3 OPQ: Mauka . 31

3.4.4 OPQ: View . 68

3.4.5 OPQ: Dockerfication . 70

3.5 Lokahi: A Laha-compliant Infrasound DSN . 71

viii

3.5.1 Lokahi Data Acquisition Service . 72

3.5.2 Lokahi Time Synchronization . 82

3.5.3 Lokahi Health . 83

3.5.4 Lokahi Analysis . 85

3.5.5 Lokahi Web . 87

4 Evaluation . 97

4.1 Deploy Laha reference implementations on test sites 97

4.1.1 OPQ Reference Deployment . 97

4.1.2 Lokahi Deployment . 100

4.2 Validate data collected by Laha deployment . 108

4.2.1 Validate data collected by OPQ deployment 108

4.2.2 Validate data collected by Lokahi deployment 109

4.3 Use Laha deployments to evaluate the main goals of the framework 110

4.3.1 Evaluation of the Generality of this Framework 110

4.3.2 Evaluation of Converting Primitive Data into Actionable Insights 112

4.3.3 Evaluation of Tiered Management of Big Data 114

4.4 Evaluation of Tertiary Goals . 143

4.4.1 Evaluation of Adaptive Optimizations for Triggering 144

4.4.2 Evaluation of Adaptive Optimizations for Detection and Classifications . . . 145

4.4.3 Evaluation of Model of Underlying Sensor Field Topology 146

5 Results . 148

5.1 Results of Validating Data Collected by Deployments 148

5.1.1 Ground Truth Analysis: OPQ . 148

ix

5.1.2 Ground Truth Analysis: Lokahi . 170

5.2 Results of Generality of this Framework . 173

5.2.1 Results of Laha Generality for OPQ . 174

5.2.2 Results of Laha Generality for Lokahi . 184

5.2.3 Discussion on Types of DSNs Laha is Suitable For 193

5.2.4 Discussion of Laha Levels . 196

5.3 Results of Converting Primitive Data into Actionable Insights 200

5.3.1 Results of Phenomena . 200

5.4 Results of Tiered Management of Big Data . 215

5.4.1 DSN System Requirements: OPQ . 215

5.4.2 DSN System Requirements: Lokahi . 240

5.5 Results of Tertiary Goals . 258

5.5.1 Results of Adaptive Optimizations for Triggering 259

5.5.2 Results of Adaptive Optimizations for Detection and Classification 259

5.5.3 Results of Model of Underlying Sensor Field Topology 260

5.5.4 Summary of Tertiary Goals . 261

5.6 Summary of Results . 261

6 Conclusions . 263

6.1 Future Directions . 264

6.1.1 Machine Learning . 264

6.1.2 Modifying Windows and Thresholds . 264

6.1.3 More Simulations . 265

6.1.4 Altering the Laha Level Hierarchy . 265

x

6.1.5 Enhanced Metric Collection . 265

6.1.6 Expanded Sensor Coverage . 266

6.1.7 Final Thoughts on Future Directions . 266

A Mauka Default Configuration . 268

B ITIC Curve Polygon Points . 272

C Lokahi Data Packet Protocol . 274

D Lokahi Acquisition Sample Config . 280

E Simulation Parameters . 283

Bibliography . 286

xi

LIST OF TABLES

3.1 Summary of data management and context addition in Laha 18

3.2 Summary of Laha Phenomena . 20

3.3 Summary of Laha Actors . 26

3.4 Summary of Laha Actor Constraints at Each Level 26

3.5 MaukaMessage . 34

3.6 Payload . 34

3.7 PayloadType . 35

3.8 Heartbeat . 35

3.9 MakaiEvent . 35

3.10 Measurement . 36

3.11 MakaiTrigger . 36

3.12 Laha . 36

3.13 Ttl . 37

3.14 GcTrigger . 37

3.15 GcDomain . 37

3.16 GcUpdate . 37

3.17 GcStat . 38

3.18 TriggerRequest . 38

3.19 ThresholdOptimizationRequest . 39

3.20 RateOptimizationRequest . 39

xii

3.21 TtlOptimizationRequest . 39

3.22 Command . 40

3.23 GetDataCommand . 41

3.24 SetMeasurementRateCommand . 41

3.25 Plugin Manager CLI Reference . 42

3.26 Measurement Data Model . 43

3.27 Trend Data Model . 43

3.28 Event Data Model . 44

3.29 BoxEvent Data Model . 44

3.30 Incident Data Model . 45

3.31 Ground Truth Data Model . 45

3.32 Laha Config Data Model . 46

3.33 Makai Config Data Model . 46

3.34 Makai Config Override Data Model . 47

3.35 Phenomena Data Model . 47

3.36 Default TTLs for OPQ Collections . 54

3.37 Mauka HealthProtocol . 60

3.38 Mauka Metrics . 60

3.39 PluginStat . 64

3.40 SystemStat . 64

3.41 LahaStat . 64

3.43 RedvoxPacketApi900.EvenlySampledChannel . 76

3.42 RedvoxPacketApi900 . 77

xiii

3.44 RedvoxPacketApi900.UnevenlySampledChannel . 78

3.45 RedvoxDeviceApi900 . 79

3.46 PrivacyPolicy . 79

3.47 AuthenticatedEmailEntry . 80

3.48 HistoricalDevice . 80

3.49 DailyDataUsage . 80

3.50 Time Synchronization Binary Protocol . 83

4.1 OPQ Deployment . 98

4.2 IML Constraints per Sensor . 116

4.3 AML Constraints per Sensor . 118

4.4 Estimated DR . 119

4.5 Estimated IR . 121

4.6 Estimated PL . 121

4.7 OPQ Estimated Parameters . 122

4.8 Summarized Laha Results (OPQ) . 124

4.9 Lokahi Estimated Parameters . 125

4.10 Summarized Laha Results (OPQ) . 126

4.11 Default Laha TTL . 127

4.12 Simulation Parameters . 129

4.13 Default AML TTLs . 131

4.14 Lokahi AML Rate . 134

4.15 OPQ Laha Comparison . 142

4.16 Lokahi Laha Comparison . 143

xiv

5.1 OPQ Boxes Co-Located with UHM Ground Truth Sensors 150

5.2 Frequency Trend Comparisons . 152

5.3 Voltage Trend Comparisons . 156

5.4 THD Trend Comparisons . 158

5.5 Events Comparisons . 160

5.6 Voltage Incidents Comparisons . 166

5.7 THD Incidents Comparisons . 167

5.8 Frequency Incidents Comparisons . 169

5.9 Summary of OPQ Incidents . 174

5.10 Summary of Global and Semi-Global Events . 181

5.11 Summary of Laha’s Strengths and Weaknesses . 193

5.12 Summary of Laha Levels Discussion . 199

5.13 Summary of Annotation Phenomena . 201

5.14 Summary of Periodic Phenomena . 203

5.15 Summary of Future Phenomena . 208

5.16 Results of Similarity Phenomena for Frequency Sag Incidents 213

5.17 Results of Similarity Phenomena for frequency Swell Incidents 213

5.18 Estimated Data Savings from “Non-Interesting” Frequency Incidents 214

5.19 OPQ Large Memory Utilization . 239

xv

LIST OF FIGURES

1.1 Laha Conceptual Model Summary . 5

3.1 OPQ System Diagram . 27

3.2 OPQ Box Design . 28

3.3 OPQ Box Software . 28

3.4 Threshold Triggering FSM States . 30

3.5 Event Id Service . 31

3.6 OPQ Mauka Brokers Communication Diagram . 33

3.7 OPQ Mauka Communications Protocol Summary . 40

3.8 ITIC Curve . 53

3.9 Periodic Phenomena Example . 57

3.10 SemiF47 Curve . 59

3.11 SemiF47 Table . 59

3.12 OPQ Mauka Metrics I . 61

3.13 OPQ Mauka Metrics II . 62

3.14 OPQ Mauka Metrics III . 63

3.15 OPQ View Screenshot . 69

3.16 OPQ View Threshold Configuration . 70

3.17 OPQ Docker Architecture . 71

3.18 Lokahi Design . 73

xvi

3.19 Lokahi Acquisition Architecture where OCSP=“original compressed serialized packet”,
UP=“updated packet”, UCSP=“updated compressed serialized packet”, M=“metadata”,
AR=“actor response”, DR=“device response”. 74

3.20 System and Service Status . 84

3.21 System and Service Status History Past Day . 84

3.22 System Metrics . 85

3.23 Lokahi Analysis Architecture . 87

3.24 Lokahi Web Main Page . 88

3.25 Active Devices . 89

3.26 Detailed Device Status . 90

3.27 Sensor Group Creation . 91

3.28 Sensor Group Status . 92

3.29 Data Explorer Interface . 93

3.30 Report Creation Interface . 93

3.31 Lokahi Web Report . 94

3.32 Lokahi Global Collection . 95

3.33 Geofence Alert Interface . 96

4.1 UH Deployment Grid Topology . 99

4.2 UH Deployment . 100

4.3 Active Lokahi Sensors . 101

4.4 Lokahi Sensors: Hawaii . 102

4.5 Lokahi Sensors: North America . 103

4.6 Lokahi Sensors: Central and South America . 104

4.7 Lokahi Sensors: Europe and Western Asia . 105

xvii

4.8 Lokahi Sensors: India and South-East Asia . 106

4.9 Lokahi Sensors: Oceania . 107

4.10 Lokahi Sensors: East Asia . 108

4.11 Estimated Laha (OPQ) . 123

4.12 Estimated Laha (OPQ) . 124

4.13 Estimated Laha (Lokahi) . 125

4.14 Estimated Laha (Lokahi) . 126

4.15 Simulated IML for OPQ . 130

4.16 Simulated IML for Lokahi . 131

4.17 Simulated AML for OPQ . 133

4.18 Simulated AML for Lokahi . 134

4.19 Simulated DL for OPQ . 135

4.20 Simulated DL for Lokahi . 136

4.21 Simulated IL for OPQ . 137

4.22 Simulated IL for Lokahi . 138

4.23 Simulated PL for OPQ . 139

4.24 Simulated PL for Lokahi . 140

4.25 Simulated Laha for OPQ . 141

4.26 Simulated Laha for Lokahi . 142

5.1 Frequency OPQ Box 1000 vs POST MAIN 1 . 151

5.2 Voltage OPQ Box 1000 vs POST MAIN 1 . 153

5.3 Voltage OPQ Box 1002 vs POST MAIN 1 . 154

5.4 Voltage OPQ Box 1021 vs MARINE SCIENCE MAIN A MTR 155

xviii

5.5 UHM THD vs. OPQ THD (POST) . 157

5.6 Ground Truth MARINE SCIENCE MCC MTR . 161

5.7 Ground Truth Adjusted THD MARINE SCIENCE MCC MTR 162

5.8 Ground Truth POST MAIN 1 . 163

5.9 Ground Truth Voltage Adjusted POST MAIN 1 . 164

5.10 Noise power spectral density levels with 95% confidence interval (CI) [1.9, -1.6] dB
re 1 Pa2/Hz for iMic and B&K across 0.97 to 22.4 Hz. 171

5.11 Noise coherence results for iMic and B&K across 0.97 to 22.4 Hz. The solid line
represents the coherence between the sensors. The filled circles represent 1/3-octave
band averaging. 172

5.12 Noise response results for iMic relative to B&K across 0.97 to 22.4 Hz. (a) Relative
amplitude between the sensors, computed as the ratio of their response corrected
spectra. (b) Relative phase, computed as the angle of the response corrected cross-
spectrum. Raw computations are represented by a solid line, while 1/3-octave band
averaging is represented by the filled circles. 173

5.13 Voltage Sag with Associated Semi-F47 and ITIC Violation 175

5.14 Voltage Sag with Associated Semi-F47 Violation . 176

5.15 Co-Observed Voltage Sag A . 176

5.16 Co-Observed Voltage Sag B . 177

5.17 Voltage Swell . 178

5.18 Excessive THD . 178

5.19 Detected Transients: Box 1001 . 179

5.20 Frequency Sag . 180

5.21 Frequency Swell . 180

5.22 Semi-Global Events I . 182

5.23 Semi-Global Events II . 182

xix

5.24 Semi-Global Incidents I . 183

5.25 Semi-Global Incidents II . 183

5.26 Infrasound of Earthquake . 185

5.27 Accelerometer of Earthquake . 186

5.28 Location of Earthquake and Sensors . 187

5.29 Infrasound of Meteor Entry . 188

5.30 Meteor Entry Sensor Locations . 189

5.31 Infrasound of Meteor Entry . 190

5.32 Infrasound of Meteor Entry . 191

5.33 Barometer Readings of Hurricane Lane . 192

5.34 Proposed Changes to Laha Levels . 197

5.35 Periodic Voltage Sags . 204

5.36 Periodic Phenomena Example . 205

5.37 Future Phenomena Self-Optimization . 208

5.38 Sub-Threshold Event . 209

5.39 Frequency Incidents Distribution . 211

5.40 K-Means: Frequency Incidents (k=8) . 212

5.41 Actual IML for OPQ . 216

5.42 Actual AML for OPQ . 217

5.43 Actual DL for OPQ . 219

5.44 Actual IL for OPQ . 220

5.45 Actual PL for OPQ . 222

5.46 Actual Laha for OPQ . 223

xx

5.47 Actual IML vs Unbounded IML for OPQ . 225

5.48 Actual AML vs Unbounded AML for OPQ . 226

5.49 Actual DL vs Unbounded DL for OPQ . 227

5.50 Actual IL vs Unbounded IL for OPQ . 228

5.51 Actual PL vs Estimated IL for OPQ . 229

5.52 Actual Laha vs Unbounded Laha for OPQ . 230

5.53 Actual Laha vs Unbounded Laha for OPQ (No IML) 231

5.54 Actual IML vs Simulation IML for OPQ . 232

5.55 Actual AML vs Simulation AML for OPQ . 233

5.56 Actual DL vs Simulation DL for OPQ . 234

5.57 Actual IL vs Simulation IL for OPQ . 235

5.58 Actual PL vs Simulation PL for OPQ . 236

5.59 Actual Laha vs Simulation Laha for OPQ . 237

5.60 System Utilization for OPQ . 238

5.61 Active Lokahi Sensors . 241

5.62 IML Growth: Lokahi . 242

5.63 IML Growth: Estimated vs Actual . 243

5.64 IML Growth: Simulated vs Actual . 244

5.65 AML Growth: Lokahi . 245

5.66 AML Growth: Estimated vs Actual . 246

5.67 AML Growth: Simulated vs Actual . 247

5.68 Lokahi DL Growth . 248

5.69 Lokahi DL Growth vs Estimated Growth . 249

xxi

5.70 Lokahi DL Growth vs Simulated Growth . 250

5.71 Lokahi IL Growth . 251

5.72 Lokahi IL Growth vs Estimated Growth . 252

5.73 Lokahi IL Growth vs Simulated Growth . 253

5.74 Lokahi PL Growth . 254

5.75 Lokahi PL Growth vs Estimated PL Growth . 255

5.76 Lokahi Laha Growth . 256

5.77 Lokahi Laha Growth vs Estimated Laha Growth . 257

5.78 Lokahi Laha Growth vs Simulated Laha Growth . 258

xxii

CHAPTER 1
INTRODUCTION

Distributed sensor networks (DSNs) consist of any number of sensors that collect and sense infor-

mation about the physical environment around them. The sensors that make up these networks

can either be homogeneous or heterogeneous. Distributed sensor networks are dynamic in that

sensors can be added or removed from the network at any time. DSNs also increasingly include

mobile sensors as well. With the onset of the Internet of Things (IoT), it is easier than ever to

build and deploy distributed sensor networks. Further, mobile devices, such as mobile phones, are

seeing increased usage as intelligent sensing agents.

Distributed sensor network (DSN) optimization is a broad topic with many different facets to

consider. Much of the literature on the topic focuses on optimizing data flow between sensors as

data flows from sensor to sensor and eventually to a sink.

The focus of this dissertation however, is to deal with the challenges of a specific subset of

DSNs. That subset is DSNs where data always flows directly from each sensor in the network

to sink nodes where data is collected and analyzed, thus, eliminating the need to worry about

intra-sensor communication, networking, and routing.

There are a broad range of technical challenges beyond the data sink. The introduction of

the Internet of Things (IoT) has created an explosion of internet connected devices that sense a

massive number of attributes about the physical world surrounding them. An increase in sensors

has created an increase in multimodal data generation with the inverse problem of creating a

decrease in the signal-to-noise ratio, making it more difficult to identify and classify signals of

interest. Multimodal data provides challenges for analysis algorithms because each sensor may be

streaming multiple physical features that need to be analyzed and dealt with independently and

dependently. As the densities of sensors increase, analysis must be able to work with missing data,

incorrect data, incomplete data, and data coming from a heterogeneous mix of hardware and sensor

configurations. Further, we can no longer assume that sensors are static in time and location as

mobile sensors are quickly becoming more prevalent, making analysis trickier. All of these issues

require an increase in storage and computational resources. Therefore, we must find approaches to

deal with sensor data to lessen these hurdles.

As DSNs scale, available storage must be balanced with the amount of data being retained.

Further, once data is collected, we need strategies for turning sensor data into actionable data and

insights. This generally involves detecting and classifying signals of interest. It is these last two

important DSN challenges that are the focus of this dissertation.

1

1.1 Converting Sensor Data into Actionable Insights

Data collected from sensors is often a sampled payload of data points representing some feature in

the physical world. As examples, weather stations produce sampled features relating to tempera-

ture, wind speed, and humidity, power meters produce a metric of total electricity consumed, power

quality sensors produce sampled data points which include voltage, frequency, and total harmonic

distortion (THD, the amount of noise at multiples of the fundamental frequency), and infrasound

networks produce sampled data which represent audio waveforms.

These features by themselves, while interesting, do not provide any context as to if there is a

signal, what the signal is, when and where the signal came from, or what caused the signal in the

first place. Detection and classification algorithms are used to attempt to extract some of these

properties. Primitive data is aggregated and compared to other primitive data to find correlations

in both time and space. Data is compared to historic data in an attempt to find patterns or other

similarities. This type of data is more interesting in that we might learn more about a signal using

these techniques, but they still do not provide actionable insights or causality information. Further,

the problem of providing actionable insights is highly dependent on the sensing domain. Depending

on other available sources of data, providing data fusion and context from outside of the DSN can

be difficult.

Evaluation techniques for converting sensor data into actionable insights is provided in Sec-

tion 4.3.2. Results of converting sensor data into actionable insights is provided in Section 5.3.

1.2 Big Data Management in DSNs

Big Data is generally defined by the four V’s; volume, velocity, variety, and value. These charac-

teristics can be observed in many of the DSNs that exist and are being created today.

That is, distributed sensor networks create a large volume of data due to the abundance of IoT

and mobile devices that make up DSNs. As communication infrastructures improve and hardware

becomes smaller, smarter, and more energy efficient, sensors are able to send and transfer larger

amounts of data. The ease of building and deploying sensors in DSNs means that more sensors

can be produced much more cheaply allowing for more sensors to be used within a DSN, increasing

coverage, but also increasing the volume of data.

Distributed sensor networks create a variety of data with different formats and data quality

issues. Distributed sensor networks can produce data at high velocity. These characteristics of

data produced from distributed sensor networks create a need for efficient architectures and specific

algorithms designed for working with Big Data.

Further, sensor networks are often constrained in both computing power and available energy

sources. This forces us to find compromises between data collection, onboard sensor processing,

sensor communication, and network coordination.

2

As DSNs scale, the amount of data a DSN must store and process increases. At certain scales,

DSNs simply can not store and process all of the primitive data that sensors are producing or process

and store aggregate data products that detection and analysis routines produce. Designers of a

DSN can either choose to collect and keep all data forever (from raw data to generated products),

or they can implement strategies for systematically discarding (hopefully) non-interesting data. If

the first option is chosen, then there is no risk of accidentally discarding signals of interest and data

can be reanalyzed when analysis algorithms change or are tweaked. However, storage and analysis

of such amounts of data can cause system degradation or even become unfeasible. If the second

option is chosen, processes must be put in place that attempt to only store “interesting” data and

discard sensor noise. The second option runs the risk of discarding important data and old data can

not be reanalyzed under this approach. However, this approach provides the benefits of providing

predictable data storage requirements that can be tuned and optimized for a particular domain

and DSN.

Evaluation of big data management in DSNs is provided in Section 4.3.3. Results of big data

management in DSNs is provided in Section 5.4.

1.3 Traditional Approaches to DSN Optimization

Much of the literature focuses on the reduction of bandwidth and communication between sensors

nodes and between sensor nodes and the sink. This is mainly performed to manage sensor energy

requirements allowing sensing to stay online longer or focus their energy usage for sensing or edge

level computing. Anastasi et al[4] provide a literature review on techniques for energy conservation

in wireless sensor networks. Many of these approaches utilize optimized triggering[2] or exploitation

of topology knowledge[74] to minimize sensor communications and save sensor energy. General

approaches to Big Data management include compression[65] or storage systems where the goal

is to have a distributed file system and move data close to where it is being processed, such as

the Hadoop Distributed File System[74]. Other systems such as NiFi[27] provide an interface for

ingestion and movement of data between Big Data tools while also providing data provenance, but

do not address data reduction and graceful degradation. Carney et al.[7] discuss how monitoring

applications require management and clean up of stale sensor data. Much of the literature on

topology management is written to decrease sensor energy requirements by exploiting the density of

sensors within a sensing field topology. For example, the ASCENT[8] framework provides adaptive

self configuring sensors that exploit topology denseness to decrease sensor energy usage. Several

other frameworks have been designed with the same goal of reducing energy usage by exploiting

topology[61, 60].

3

1.4 Laha: An Abstract Framework for Adaptively Optimizing

DSNs

In this dissertation, I describe an abstract distributed sensor network framework, Laha1, that

adaptively optimizes data storage using a tiered TTL approach and provides a mechanism in which

typed aggregated data is continually refined to the point of being of becoming actionable.

The Laha data model can be conceptualized as a multilevel hierarchy which can be represented

as a pyramid (see Figure 1.1). Laha Actors act on the data model to move data upward through

the levels and to apply optimizations downward through the levels. Many of these optimization

techniques were developed independently. Laha provides a conceptual framework that enables them

to work together.

The lowest level of the hierarchy stores all recently received raw sensor data. This data expires

and is automatically removed within a limited period of time (for example, 1 hour) unless the data

is found to be interesting, and is thus propagated upwards to the next level of the hierarchy. Higher

levels of the data hierarchy organize data in the same way, however each level adds context to the

examined signal or signals. Context includes classifications, locality metrics, temporal metrics, or

similarities to current or prior signals of interest. The highest level of the hierarchy, Phenomena,

represents predictive capabilities of the sensor network which are then used to optimize and tune

the lower levels. Phenomena also form the basis for providing actionable insights.

A high level summary of the Laha abstract framework is provided as Figure 1.1 which shows

the levels and names of the hierarchy, a brief description of the functions of each level, and Laha’s

Actors and how they move data upwards (right hand side) and how they apply optimizations

downwards (left hand side).

The Laha framework provides two important benefits to DSNs:

1. Converts sensor data into actionable data and insights

2. Provides graceful degradation and metrics on storage requirements for voluminous sensor data

Although not the main focus of this dissertation, Laha provides several tangential benefits with

respect to the following DSN problem domains:

1. Triggering optimizations

2. Detection and classification optimizations

3. Topological optimizations

4. Sensor energy requirement optimizations

1Laha is a Hawaiian word meaning “to distribute”.

4

Figure 1.1: Laha Conceptual Model Summary

5

These tangential benefits are provided by Laha Actors that exist within each level of the Laha

framework. I do not claim that these techniques are novel, but I do claim that either all or a subset

of these techniques are required to enable progress towards the main goals of this framework. To

that end, Laha Actors implement several state of the art algorithms present in the literature that

address these tertiary problems.

Laha was evaluated by designing and implementing two Laha-compliant reference implementa-

tions, OPQ and Lokahi. Open Power Quality (OPQ) is a power quality (PQ) network consisting

of custom hardware and distributed software services that detect distributed PQ signals such as

voltage sags and swells, frequency sags and swells, transients, THD, and other known PQ issues.

OPQ Mauka is a distributed, plugin based middleware component of OPQ that performs higher

level analysis, data management, and optimizations of the OPQ services. Lokahi is a distributed

infrasound network consisting of mobile iOS and Android devices and multiple cloud based software

services whose purpose is to supplement the International Monitoring System (IMS) in detecting

large infrasound signals.

The reference implementations were designed and deployed to test sites at UH Manoa and at

the Infrasound Laboratory in Kailua-Kona, Big Island and abroad.

Data collected from the PQ network was validated against calibrated reference sensors that

have already been installed at the power mains of a subset of buildings on campus. The Office of

Energy Management at UH Manoa has given us full access to live and historic PQ data collected

at these reference sensors. OPQ Boxes were co-located and placed in buildings with the reference

sensors so that I could validate that the triggering and raw data streams I receive from the OPQ

Boxes are in agreement with what the reference sensors are observing.

Data collected from the infrasound network was also validated against industry standard cali-

brated B&K infrasound sensors. Further, signals in the infrasound network are known a priori since

I am able to control the signals that are generated from our calibrated infrasound source, allowing

further validation of received signals.

In order to evaluate the generality of the Laha framework, two separate Laha-compliant DSNs

sensing different domains were designed, distributed, and evaluated.

The first Laha-compliant DSN is Open Power Quality (OPQ), a distributed DSN that collects

and analyzes power quality (PQ) signals. PQ is a measure of the “goodness” of the power feeding

your electronics. The features that this network collects includes voltage, frequency, and THD.

From these features, OPQ can classify the following PQ signals: voltage dips/swells, frequency

dips/swells, high levels of THD, and transients. Another goal of this network is to detect distributed

PQ signals. That is, the same signal detected on multiple sensors enables one to study how PQ

signals move through a power grid. This network provided metrics on the number of Incidents

classified as well as numbers of correct predictions from Phenomena. The number of classified

Incidents are compared to industry standard PQ monitors co-located with OPQ sensors as a means

6

of evaluating whether Laha is capable of supporting the goals of this network.

The second Laha-compliant DSN is Lokahi, a distributed, mobile infrasound detection network.

Infrasound consists of sounds waves that are less than 20 Hz. These signals are generated by large

movements of the atmosphere and can be observed from large distances. Examples of infrasound

sources include volcano eruptions, meteors, missile launches, and large explosions. In this network,

Android and iOS devices were deployed with a special app that is capable of collecting acoustic

signals as they travel through the atmosphere. As part of the evaluation, in this network, we

collected and discriminated infrasound signals from different types of infrasound sources. Many of

these signals are correlated with industry standard infrasound sensors to show that Laha is capable

of supporting the infrasound detection goals of this network.

In order to evaluate the multi-level representation of the Laha Framework in the context of

providing actionable data, I examined cyclical and predictable signals and tested whether or not

Laha is able to utilize predictive analytics to provide actionable insights. To test this, I provided

a number of false positive and false negatives for predictive analytic results. I evaluated whether

the sensing domain has any effect on how well Laha is able to provide actionable insights. I also

claim that each level in the Laha-hierarchy is important in the process of deriving these insights.

I provided data that either supports or opposes the usefulness of each level, whether the current

number of levels is adequate, and whether the idea of using levels to provide actionable insights is

useful at all.

I evaluated my claim that a tiered TTL approach to sensor data management provides the

benefits of providing an configurable upper bounds on storage requirements for each Laha level,

graceful degradation, and a reduction of sensor noise being stored. To test this, I implemented

procedures for calculating storage bounds and determined whether these theoretical bounds are

valid in practice. Since it is possible that the TTL approach could throw away important data, I

measured the number of false positives using the TTL approach as a means of evaluating its useful-

ness with a discussion of how detrimental these false positives might actually be to understanding

and creating actionable data sets.

Finally, I evaluated multiple state of the art algorithms current in the literature for optimizing

triggering, detection, classification, sensor energy usage, and topological modeling and provide met-

rics to their usefulness for making progress towards the larger goals of providing a generally useful

representation for DSNs, converting primitive sensor data into actionable insights, and providing

a tiered approach to DSN data management and storage requirements. I provided a discussion on

whether these techniques are useful within the two domains that they are implemented, and then,

how they contributed to the overall goals of this framework. I also show which combinations of

tertiary techniques provide the most traction in solving the overall goals of this framework.

7

1.5 Claims of Laha Abstract Framework

The major claim of this dissertation is that the Laha Framework provides a generally useful

representation of an abstract framework for real-time high-volume DSNs. I provide four

related claims with design, evaluation, and results for each claim.

1.5.1 Generality of the Laha Framework

The generality of the framework examines the ability for Laha to be a useful abstract framework in

different domains while still meeting the requirements of those domains. This dissertation examines

two domains, distributed power quality monitoring through the Open Power Quality network and

distributed infrasound monitoring through the Lokahi Network.

To evaluate the generality of the network, I designed, implemented, and deployed two Laha-

compliant reference networks in two different domains, power quality and infrasound. The design

of these networks is described in Chapter 3. These reference implementations generate evidence

for the ways in which Laha supports the goals of the sensor networks and ways in which it falls

short. The evaluation of the generality of Laha is provided in the Evaluation chapter in Section 4.3.

Results showing the generality of Laha are provided in the Results chapter in Section 5.2. The

implementations also provide insights into the types of distributed sensor networks for which Laha

is well-suited, and the types for which it is not. These insights are discussed in Section 5.2.3.

1.5.2 Ability to Convert Primitive Data into Actionable Insights

Laha uses a tiered hierarchy to convert primitive data into actionable insights. As data passes

“upward” through the levels, context is applied to the data allowing different types of analysis to

be performed on the data and more accurate conclusions to be drawn from the data.

The reference implementations enabled me to evaluate the multi-level representation system of

tiered levels as described in the Evaluation Section 4.3.2. I claim that Laha enables a distributed

sensor network to derive actionable insights from low level data, and that each of the levels is

important to that process. The two reference implementations provide concrete data as to the

set of levels that are useful in practice, or whether different levels would be more appropriate, or

whether the level strategy itself has problematic features. These results are provided in Sections 5.3

and 5.2.4.

1.5.3 Tiered Big Data Management

Laha additionally uses the tiered hierarchy to provide management of “big data” relating to sensor

acquisition and analysis. This is accomplished by providing a Time-to-Live (TTL) value for data

8

that determines when that data should be garbage collected. I show how this approach is able to

throw away noisy data while still identifying signals of interest.

I claim that a benefit of Laha’s mechanism for managing data is that it enables the calculation

of upper bounds on data storage requirements given the state of the network. I developed the

analytical procedures required for calculating data storage requirements (as discussed in the Evalu-

ation Section 4.3.3), and determined whether these procedures are valid in practice as shown in the

Results Section 5.4. One obvious problem with a TTL approach is the possibility of false negatives:

data that is discarded before it has been recognized as important. To quantify my results, I provide

a comparison to ground truth sensors as described in the Evaluation Section 4.2 and shown in the

Results Section 5.1.

1.5.4 Tertiary Goals and Claims

Finally, I assessed the ability to solve the tertiary problems of optimizing triggering, detection,

classification, bandwidth, predictive analytics, and the ability to build a model of the sensing field.

I claim that these problems need to be addressed in some form in order to solve the larger problems

of turning primitive data into actionable insights and to provide a mechanism for managing large

amounts of sensor data. I compare and contrast state of the art algorithms present in the literature

to determine if they are effective in practice and useful for addressing the two larger problems. My

evaluation in Section 4.4 describe metrics required for demonstrating effectiveness. The results of

the tertiary goals are provided in the Results Section 5.5.

1.6 Contributions of Laha

I have provided the following four contributions to the areas of DSNs, specifically regarding the

problems of optimization and management of DSNs.

First, the Laha design, a novel abstract distributed sensor network that provides two useful

properties relating to data management, converting primitive data to actionable data and tiered

management of Big Data (Design 3, Evaluation 4.3.2, 4.3.3, Results 5.3, 5.4).

Second, an evaluation of the Laha abstract framework through the deployment of two Laha-

compliant reference implementations, validated data collection, and several experiments that are

used to either confirm or deny the benefits claimed by Laha (Evaluation 4.2, Results 5.1).

Third, two Laha-compliant reference implementations, OPQ and Lokahi, which can be used to

form DSNs for the collection of distributed power quality signals and the distributed collection of

infrasound signals. (Design 3, Evaluation 4.1, 4.3.1, Results 5.2)

Fourth, a set of implications for modern distributed sensor networks as a result of the evaluation

of Laha. That is, how does the confirmation or denial of Laha’s benefits affect the field of modern

DSNs moving forward? Results for these contributions can be found in Sections 5.2.3 and 5.2.4.

9

1.7 Organization of this Dissertation

Chapter 1 introduces the the problem statements (Sections 1.1 and 1.2), major components of the

Laha abstract framework (Section 1.4), traditional approaches to DSN optimization (Section 1.3),

contributions to the field of DSNs (Section 1.6), and major claims (Section 1.5).

Chapter 2 provides a literature review. Section 2.1 examines the literature on Big Data and

DSNs. Literature on data management related to DSNs is provided in Section 2.2. Section 2.3

discusses literature on predictive analytics and forecasting. Section 2.4 examines literature on

topology and localization. Section 2.5 discusses literature for optimizations for triggering.

Chapter 3 outlines the Laha system design. Section 3.1 provides the design of Big Data man-

agement. Section 3.2 examines the design of Phenomena. Section 3.3 provides the design of Laha

Actors. Section 3.4 discusses the design of the OPQ network. Finally, Section 3.5 describes the

design of the Lokahi network.

Chapter 4 provides an evaluation of Laha. Section 4.1 examines the deployments for the OPQ

and Lokahi networks. Section 4.2 discusses evaluation techniques for data validation. Section 4.3

examines strategies for evaluating the main goals of Laha. Section 4.4 provides the evaluation of

tertiary goals.

Finally, Chapter 5 provides results and discussions of results. Section 5.1 provides results of

data validation. Section 5.2 discusses results for the generality of the Laha framework. Section 5.3

provides results detailing the conversion of primitive data into actionable insights. Section 5.4

provides results for tiered management of Big Data. Section 5.5 provides results of Laha’s tertiary

goals.

Chapter 6 provides concluding remarks and future directions. Section 6.1 outlines future di-

rections. Future directions includes utilizing machine learning to improve triggering, detection,

classification, and Phenomena, experimenting with window sizes and thresholds used in detection

and classification algorithms, modifications to the Laha level hierarchy, data fusion, more complete

simulations, metric collection, and the deployment of larger distributed sensor networks.

10

CHAPTER 2
RELATED WORK

This chapter reviews research related defining Big Data in terms of DSNs, Big Data management,

self-optimizing DSNs, predictive analytics and forecasting, optimizations to triggering, detection,

and classification of signals-of-interest within the context of DSNs.

2.1 Big Data and Distributed Sensor Networks

“Big Data” is a term that is used to define either the characteristics of collected data or the processes

involved for storing and analyzing collected data. Information that is considered Big Data provides

a number of challenges.

One of the best reviews on Big Data literature is provided by the President’s Council of Advisors

on Science and Technology (PCAST) in their report to the White House [26]. In this review, Big

Data is described using several definitions.

The first definition includes “high-volume, high velocity, and high-variety information assets

that demand cost-effective, innovative forms of information processing for enhanced insight and

decision making” [21]. This definition focuses on the characteristics of the data that make it “Big”.

In this context high-volume refers to the total amount of data that requires processing, high-velocity

refers to the speed at which data arrives, and high-variety refers to the fact that sensor data is

often heterogeneous and incomplete. The second part of the definition includes the terms cost-

effective, innovative forms of information processing for enhanced insight and decision processing,

which implies that we need technology that is able to deal with these types of data characteristics

while doing so within the limits of a system with the goal of refining the data to provide insights

and decision making that would not have been possible without the information processing.

A second definition [73] mentioned by the PCAST report rings more true to what Laha attempts

to accomplish within the context of DSNs and says that Big Data is “a term describing the storage

and analysis of large and/or complex data sets using a series of techniques including, but not limited

to, NoSQL, MapReduce, and machine learning”. This second definition defines Big Data in terms

of storage and analysis techniques and is a useful definition for describing the processes by which

Laha and the Laha reference DSNs deal with distributed sensor data.

Finally, Bhat [6] shows that the production of “Big Data” is greatly outpacing the available

storage for that data. The author shows evidence that even with technological advances is data

storage mediums, that the gap still exists. Further, the author shows that there are several short-

comings with current data reduction techniques such as compression and deduplication. Issues with

compression include that fact that while lossy compression provides better compression ratios, data

11

quality is reduced and using lossless compression algorithms does not provide the required compres-

sion ratios. Compression also provides additional overhead in terms of CPU utilization. Similar to

compresses, deduplication shifts the costs from the network to the CPU. As such, other techniques

should be considered for data reduction.

2.2 Distributed Sensor Networks and Big Data Management

Garcia-Gil et al. [20] introduce the concept of “Smart Data” which is value and veracity added

to data by means of removing noise from “Big Data”. The authors claim that applying labels

to data through classification algorithms are more accurate when noisy data is removed from the

initial data set. In order to remove noise, the authors train two different models against noisy

and non-noisy data. The authors provided two different approaches to this process both using

Apache Spark to distribute the processing load. The first approach the Homogeneous Ensemble

for Big Data (HME-BD) which uses a single random forest classifier. The authors also provided

a second approach called the Heterogeneous Ensemble for Big Data (HTE-BD) which utilized

multiple classifiers for identifying noisy data, namely random forests, logistic regression, and k-

nearest neighbors. The authors found the HME-BD approach provided more accurate results and

better performance characteristics. The authors found that by removing noisy data, they were able

to increase the accuracy of the classification algorithms.

There are many technologies for movement, transformation, and storage of sensor data. Current

state of the art technologies include distributed streaming and computation engines such as Apache

Kafka [36] or Apache NiFi [19]. Although these frameworks provide a lot of flexibility in terms of

transformations applied and data management, they do not provide automatic mechanisms for data

management. Other, less known technologies are discussed in [27], but also suffer from the fact that

they are flexible in moving large amount of data, but do nothing to address storage requirements

or graceful degradation.

Another approach is to use compression techniques, such as those described by Tang [65]. Tang

utilizes spatio-temporal correlation to reduce the amount of data that is transferred from a set of

distributed sensors. Tang uses these application specific algorithms to reduce the overall size by a

factor of 8 while still maintaining the target signal-to-noise ratio required by the network. However,

at scale, even data compression can not keep up with the approach of storing everything all the

time.

There are many distributed computation engines and techniques which provide a generic frame-

work for distributing computational tasks across multiple CPUs and multiple machines. The

two, which are generally receiving the most academic attention are MapReduce [13] and Apache

Spark [77]. Although these computation engines are very generic and quite powerful, they can not

easily inherit any of the optimizing benefits provided by Phenomena in the Laha framework.

The data grid [9] is a framework that was designed to provide two basic services the authors

12

believe are fundamental for distributed management and analysis of large scientific datasets, storage

systems and metadata management.

Wu [76] constructs the HACE framework, which is specifically designed for mining of insightful

data from varied Big Data sets. Although this framework is useful for managing multiple streams

of data and mining over multiple features, it does not attempt to provide an upper bounds on

storage requirements or provide graceful degradation in the face of large scaling networks.

In terms of frameworks using aggregation to facilitate data reduction, Camdoop designed by

Costa [12] is a framework that aims to push aggregation techniques from the edge of the sensor

network all the way to the sink. Camdoop was able to show positive results in data reduction

while still maintaining semantic meaning. However, Camdoop was designed to run over simple

data streams (such as word count logs) and it is not known how this system would perform with

more primitive types of data. Camdoop was designed to run within CamCube simulations and it’s

not known how this would run in practice with a real DSN.

Rehman et al. [70] created a big data reduction framework and argue that reducing data early in

the analytics process can lead to efficient value creation. This framework was designed specifically

for enterprise customer Big Data analysis, but I believe some of the core tenants could apply to any

Big Data problem. They argue that by performing data reduction early in the process its possible

to lower service utilization costs, enhance trust between users and developers, and preserve privacy

of users among other benefits.

Luan et al. [42] in their paper on Fog Computing, describe data reduction and aggregation

techniques by performing some of a subset of computations and data reduction on the edge of the

network, such as in mobile devices (cellphones) or in servers that geographically located near the

data acquisition sources. Aggregated data is then sent from the edge devices to data sinks for

further analysis or action. One of the major difficulties with this approach is handling scale and

being able to dynamically deploy resources to the edge as data streams scale.

In a paper by Stateczny et al. [64], the authors work to determine whether artificial neural

networks can be used to provide Big Data Reduction for hydrographic sonar data. The authors

found that they were able to see some reduction, but ran into issues when the data was very dense.

The research presented here also appears to be very domain specific.

2.3 Distributed Sensor Networks and Predictive Analytics and

Forecasting

Mohsenian-Rad et al. [44] designed the µPMU (phase measurement unit) system which provides

distributed power quality measurements over power grid distribution systems. The µPMUs in

conjunction with their backend software provide two types of analytics. Descriptive analytics

provide information about the types and classifications of power quality issues that are observed

13

within the power distribution grid. Predictive analytics are used to predict future power quality

issues. The authors describe their system as providing the ground for for enabling future prescriptive

analytics, which is the idea of self-tuning the DSN to prepare for future power quality problems by

using a combination of descriptive and predictive analytics. Prescriptive analytics are a concept

that currently exist within the Laha framework.

Anastasi et al. [4] breaks data predictions algorithms for DSNs into two classes. The first class

of algorithms are defined as stochastic approaches and use random probabilities and non-precise

statistics to provide predictions. The other class is called time series forecasting and uses historical

time series data to provide future predictions. An example of a stochastic model for predicting

sensor data is the Ken model [11] which was developed for energy reduction by minimizing the

data sent between sensors and sink nodes. This is accomplished by using a model of sensed data

and only sending data when the sensed values at the sensor do not match what was predicted by

the model. The model is built during a training phase in which a probabilistic density function

(PDF) is generated for the model. Ken is flexible enough to provide models for different types of

sensed phenomenon and can work anywhere where there are high correlations in time and space.

Time series forecasting algorithms typically use moving average, auto regressive, or auto regres-

sive moving average models. The authors of the PAQ framework [69] use auto-regression techniques

to build a model of sensor readings that is compared between sensor node and sink nodes while

providing provably correct error bounds. The SAF architecture [68], by the same authors, im-

proves on the PAQ framework by refining the AR models and also adds the ability to not only

detect outliers, but also detect inconsistent data. These approaches provide predictions for a single

feature, however Laha provides the ability for DSNs to be multi-modal. The paper presented by

Le et al. [39] uses time series forecasting, but provides multiple models that are switched out when

the data changes. That is, given the current state of the network, a model is selected that is most

likely to provide correct predictions. This is useful if a network has multiple features that can be

used for forecasting.

Han et al. [24] create an approach for efficient mining of partial periodic patterns in time series

databases. Research before this could only match periodic signals if the patterns were completely

full, however the authors augment this approach to support the finding of partial periodic signals,

which are more common in practice. The authors show that the signals can be recognized after

2 passes of the database. Keogh et al. [35] take a different approach with their Tarzan algorithm

and instead of mining for known periodic signals, they come up with an approach to enumerate all

“surprising” patterns of data in time series databases. They use a statistical approach (a subset of

the stochastic approach) that works in linear time to determine if the occurrence of a data point

differs from that expected by change. They found that their approach was more sensitive and

selective than other approaches described in the paper.

14

2.4 Determining Topology and Localization

Several recent papers have been published for determining the location source of infrasonic signals

of interest. These include papers by Pilger et al. [51] for tracking large meteoroids using the

International Monitoring System (IMS), Hupe et al. [28] for utilizing IMS to contribute to gravity

wave measurements, and Farges et al. [18] for localization of lightning strikes using infrasound

detections through the IMS. The one commonality between all of these research projects is that

they utilize the IMS system for collecting their measurements. The IMS is a large, multi-national

effort for creating a high uptime network for detecting nuclear proliferation. This dissertation will

show the viability of creating an inexpensive DSN that rivals the IMS using common off the shelf

equipment.

Langendoen and Reijers [38] provide comparisons for localization techniques of large DSNs. This

approach requires that the DSNs are self organizing and do not depend on global infrastructure (such

as GPS), are tolerant to node failures, and are energy efficient. These constraints rule out other

localization approaches such as GPS. One thing that differentiates Laha networks to Langendoen’s

is that Langendoen assumes a random distribution of sensor nodes where sensors in Laha networks

are strategically placed. If there are a fraction of nodes that do know their location (anchor nodes),

then there are several techniques that meet Langendoen’s criteria including Ad hoc Positioning

System from Niculescu et al. [46], the N-hop Multilateration Primitive by Savvides et al. [59], and

Rabaey’s work on robust positioning algorithms [55]. The three approaches all use three similar

phases for localization: distance between anchor nodes and other sensors, position, and refinement.

Laha hopes to provide sensor distance between sensors rather than physical distance. The above

algorithms use flooding of the network for evaluate distance metrics, which may not be possible in

Laha deployed networks.

When timing synchronization between nodes is sufficient, that is, the synchronization between

sensors provides a timing accuracy of more than the Nyquist frequency for the signals of interest

trying to be captured, it is possible to use arrival time of signals to provide metrics on sensing

field topology and localization. This is the premise behind sets of algorithms that look at a single

signal and the arrival times of that signal at multiple sensors along with possible direction and then

attempt to provide an estimate of source signal localization. This has been performed in infrasound

networks using the INFERNO framework as described by Perttu [50] and in other acoustic DSNs

such as those used for efficient shooter localization (finding the source of a gun shot from collected

acoustic signatures) in [22] and [43]. Localization of non-acoustic signals has also been shown in

the literature. For example, Parsons et al. provide a method for localizing PQ disturbances by

analyzing energy flow and peak instantaneous power for both capacitor energizing and voltage sag

disturbances from sampled voltage and current data [49].

Although not related to determining the topology of a PQ network, there is research that can

also find the optimal placement of PQ sensors given a the topology of the network. Won, et al. [75]

15

provide an automatic method of placing PQ sensors on a known topology to maximize signal

collection while minimizing the total number of required sensors.

2.5 Optimizations for Triggering

Triggering is the act of observing a feature extracted data stream for interesting features and trig-

gering sensors to provide raw data for a requested time window for higher level analysis. Adaptively

optimizing triggering is a way to tune triggering algorithms and parameters with the aim of de-

creasing false positives and false negatives. In this context, a false positive is triggering on a data

stream that does not contain a signal of interest and a false negative is not triggering on a data

stream that does contain a signal of interest.

Many of the optimizing triggering algorithms present in the literature exist to minimize sensor

energy requirements and bandwidth requirements. This is addressed in great detail in the literature

review by Anastasi et al. [4]. This is accomplished by reducing communications between sensor

nodes and the sink. It is argued in [52] that the costs of transmitting a single bit of information

from a sensor cost approximately the same as running 1000 operations on that sensor. However,

there is some contention on this topic as [2] argues that in some modern sensors computational

requirements can equal or eclipse those of sensor communication.

One of the main drivers of optimization of triggering is to take advantage of the known sensing

field topology of a DSN. This is often referred to in the literature as “topology control” [58]. When

the topology of the sensing field is known and when there is an adequate density of sensors, Vuran

et al. [42] show that sampled data display strong spatial and temporal correlations. This fact can

be used to reduce the amount of duplicate sensor data that is transmitted, stored, and processed.

Topology control is generally split into two categories, “location driven” where the location of

the sensor is known and “connectivity driven” which aims to dynamically activate or deactivate

sensors to provide complete coverage of a sensing field. Many of the location based approaches in

the literature attempt to maximize the ability for sensors to communicate with each other, however

Laha takes the approach that all sensors communicate directly with sink nodes eliminating the

need for optimizing intra-sensor communications. One downside to location based approaches is

that GPS sensors can be energy hogs and only work with directly line of site to the atmosphere.

In these cases, a subset of sensors can be supplied with a GPS and the other sensor use additional

techniques such as NTP or statistical analysis to determine location [38].

More details on topology control can be gathered in the reviews by Karl et al. [34] and Vuran

et al. [72].

16

CHAPTER 3
SYSTEM DESIGN

Laha is an abstract framework for distributed sensor networks that provides a means for turning

primitive data into actionable insights, tiered management of voluminous amounts of sensor data.

Major goals are in part accomplished by augmenting a DSN with the ability to adaptively optimize

its bandwidth, detection, and classification.

The Laha framework is made up of five levels that can be viewed conceptually as a pyramid (see

Figure 1.1). Primitive data entering the Laha framework is located at the bottom of the pyramid.

As data moves upward through the levels, noise is discarded, less interesting events are discarded

or aggregated into upper levels, events are given more meaning and context, and associations and

predictions are made.

3.1 Big Data Management in Laha

Big Data management was outlined in Section 1.2. The Laha framework acts as an adaptive sieve

for filtering noise and uninteresting data collected from a DSN. In this way, each level only passes

what it considers interesting to the level above it. In practice, “higher” levels determine what is

interesting and pull data from “lower” levels. All data at a particular level is garbage collected at

specific intervals relating to its important to the DSN.

Each level only keeps data for a specified amount of time before it is garbage collected. As data

moves up the pyramid, it is generally considered more useful and therefore has a longer Time to

Live (TTL), the amount of the time the data lives before it is garbage collected. When a higher level

detects “something interesting”, the data contained in the time window of “something interesting”

is copied into the levels above it and will persist. If this data is not copied into higher levels, then

the data will eventually be garbage collected as determined by its TTL. In this way, Laha preserves

data from levels if that data is interesting or is associated with interesting data. This also provides

graceful degradation of services. The TTL is managed by the overall memory management of the

system. Laha Actors are designed to work within the constraints of the TTL at different levels. If a

constraint is broken, the Actor logs this issue. TTL can be optimized by Phenomena at each level

to either tune for system performance or tune for decreasing of false positives and false negatives

at different levels within the Laha hierarchy.

A summary of data management in Laha is provided in Table 3.1. It should be noted that

the TTL values are default values specifically for the OPQ and Lokahi networks, but these are

configurable and dependent on the domain that Laha is deployed within.

17

Level Description Time-to-Live (TTL)

Phenomena Level (PL) Contextual & predictive
analytics

2 years

Incidents Level (IL) Classified signals 1 year
Detections Level (DL) Triggered windowed raw

data
1 month

Aggregate Measurements Level (AML) Statistical aggregates of
raw data

2 weeks

Instantaneous Measurements Level (IML) Raw sensor data 15 minutes

Table 3.1: Summary of data management and context addition in Laha

3.1.1 Instantaneous Measurements Level

The Instantaneous Measurements Level (IML) receives raw, sampled data from the DSN. The

amount of data received is determined by the sample rate of each device multiplied by the number

of fields per sample. Most of the time, devices in the network are mainly sampling noise. A large

percentage of the data in this level is destined for garbage collection and data is assigned a short

Time to Live (TTL) of 15 minutes by default. Often times, IML data is bounded by the available

onboard memory of the sensor.

3.1.2 Aggregate Measurements Level

The Aggregate Measurements Level (AML) is responsible for rolling up IMs from the IML. In

general, this level only works with feature extracted data, rather than working with the raw samples.

Each Measurement in the AML provides summary statistics over a configurable time window. For

example, these can include min, max, mean, median, mode, and variance statistics.

It is possible to breakup the AML into several sub-levels, each with different window sizes. For

example, Laha might roll IMs into one minute AMs, then roll one minute AMs into hour AMs,

then days, and so on. Each sub-level within the AML can have its own configurable TTL, ensuring

long term summary statistics stick around for as long as needed. This provides us a high level

view of the network and can provide insights into long term Trends which would not be visible (or

available) in the IM data stream.

Similar to IMs, AMs can be saved and copied to the levels above it when interesting data is

observed. This ability allows for AMs during these time periods to be stored and saved from the

garbage collection process.

At this point in the hierarchy, we are still not providing any context to the data that we are

receiving. Context is provided by levels above the AML.

18

3.1.3 Detections Level

The Detections Level (DL) is the first level that provides some context to the data that the database

is receiving. This level is responsible watching the feature extracted data streams, and requesting

IMs from the IM level. In general, the detection level is meant to be trigger happy1 and be overly

aggressive when determining whether a feature extracted data stream looks interesting.

When a data stream looks interesting, the DL marks a timestamp N seconds before the inter-

esting features and M seconds after the interesting features, where both N and M are configurable

within the framework. The goal is to use a time window that catches signals of interest within it.

Since these data ranges will be further processed and refined higher in the hierarchy, there is no

issue with collecting large amounts of data in this level.

The actual methods of detection are dependent on the characteristics of every individual sensor

network. This framework assumes that the detection algorithms are provided by the implementing

frameworks.

Similar to other levels, the DL level will have its IMs and AMs copied into levels above it when

upper levels observe something interesting in the DL. The Detections level is set to have a TTL of a

one month by default. This dissertation uses the terms “Events” and “Detections” interchangeably

to describe data produced by the DL.

3.1.4 Incidents Level

Incidents represent classified signals of interest. Incidents are individual classifications for signals

of interest and are created by analyzing data from Events. Data from Events may contain multiple

Incidents. Individual signals of interest may be classified as multiple Incidents (for example a

transient being classified as both a transient and frequency Incidents).

What separates Incidents from Events are the size of the data windows and the ability to

classify signals of interest. Whereas Events contain a window that may or may not contain signals

of interest, Incidents always contain classified signals of interest. Further, Incidents are always

a subset of Event windows. Event windows are defined by thresholds crossing into non-nominal

territory, while Incident windows are defined by classification algorithms for the exact start and

end of the Incident within the Event window.

For example, the OPQ network may detect frequency deviations in the triggering data stream.

These deviations cause an Event to be generated. The Event is further analyzed by Incident

algorithms and it is found that the Event data contains multiple frequency deviation Incidents and

an excessive THD Incident. Each Incident is a subset of the original Event. As another example,

the Lokahi network detects deviations in the infrasound range. These deviations cause an Event to

be generated, which when further analyzed by Incident algorithms, it is found that the Event data

window contains two atmospheric explosions that are classified as Incidents.

1Pun intended.

19

Incidents are expired after one year of storage by default.

3.1.5 Phenomena Level

Phenomena are defined as a grouping of sensors, Events, or Incidents that provide additional context

based on annotations, locality, periodicity, predictiveness, or similarity. An example of Phenomena

would be determining what caused the classified signals observed in the Incidents Level.

Not only do Phenomena provide interesting insight and analytics into the underlying data, but

they also provide a means for adaptively tuning the underlying collection, triggering, detection,

and analysis of a distributed sensor network.

Phenomena utilize a TTL of 2 years by default.

Phenomena are summarized in Table 3.2 and discussed in detail in Section 3.2.

Evaluation of utilizing these levels is provided in the Evaluation in Section 4.3.3. Results are

provided in Section 5.4.

3.2 Phenomena: Providing Adaptive Optimizations in Laha

Phenomena provide context and actionable insights on top of Incidents generated within a DSN.

Where an Incident provides a general classification of a signal of interest, Phenomena go beyond

general classifications and provide context such as what caused the signal to appear, or identifying

other characteristics of an Incident such as if it is cyclic, similar to other Incidents, or identifying

an Incident that never would have been observed due to triggering thresholds.

Not only do Phenomena provide context, Phenomena are also responsible for tuning the un-

derlying DSN. Phenomena analyze Incidents and then perform optimizations that increase the

signal-to-noise ratio while keeping the DSN bounded in terms of CPU, storage, network, and mem-

ory performance. Phenomena also collect and store metrics about the DSN in an attempt to provide

context about the performance characteristics of the DSN.

The following sections investigate the details of Phenomena and how they are implemented

within Laha.

Phenomena Description

Annotations Provide context about an Incident or set of Incidents
Locality Provides context on how Incidents are related in time and space
Periodicity Designation for Incidents that exhibit repetitive or periodic behavior
Similarity Subset of Incidents found using grouping and community detection algorithms
Future Incidents predicted to occur in the future

Table 3.2: Summary of Laha Phenomena

20

Evaluation of Phenomena is provided in Section 4.3.2. Results of the evaluation of Phenomena

are provided in Section 5.3.1.

3.2.1 Annotation Phenomena

Annotations provide context about an Incident or a set of Incidents. Annotations are generally

user provided or sourced from other data sources to provide supporting context to Incidents. For

example, Annotations might include “Cloud Cover”, “Hurricane Hector”, “Dryer Turns On”, etc.

In some sense, annotations allow us to label our data sets beyond a simple classification and start

looking at causal classifications. Once enough annotations have been assigned to classified Incidents,

Laha can used Annotations to attempt to label unknown Incidents with similar characteristics.

Annotations are useful for creating labeled data sets. Although it is a outside the scope of

this dissertation to investigate the use of machine learning for signal classification and prediction,

annotations provide a path for Laha-based DSNs to implement machine learning on Incidents and

Events and Annotations are a useful tool for providing training data.

Annotations can be created through a user interface (View in OPQ and Lokahi View in Lokahi)

or algorithmically. Annotations that are created from a user interface are created by users and

consumers of the DSN. This occurs when a user knows the cause of an Incident. The user can

access the GUI and add an Annotation to a previously created Incident or Incidents. Users can

select multiple Incidents for Annotations.

A second approach to creating annotations is algorithmically. For this, we can make use of

Similarity Phenomena. When new Incidents are generated, they are compared against the list

of Incidents referenced by Annotation Phenomena for similarity. If the Incidents are statistically

similar (with better than 75% probability), then the newly generated Incidents will be Annotated

by the same Annotation. In this case, a new Annotation Phenomena is not created, but rather the

new Incidents are referenced in the original Annotation Phenomena.

Annotations can be used to tune a DSN by allowing Laha to filter on Incidents with known

Annotations. Users may only care about certain types of Incidents, and would prefer to filter out

other types of Incidents. As an example, let us say a user of a distributed power quality network

has provided an Annotation for Incidents that are generated by their solar panel installation during

times of high solar radiance. This Incident may cause power issues locally and as such they are

only interested in similar Incidents. The user can specify that Measurements, Trends, Events,

or Incidents from their sensor should only be stored if newly created Incidents have the same

Annotations that the user is interested in.

3.2.2 Locality Phenomena

Locality provides context on how Incidents are related to each other in both space and time. Laha

is able to determine whether classified Incidents are local to a single sensor, to a group of co-located

21

sensors, or global across an entire network. Sensors can be co-located in both the physical sense

and also co-located within a sensing field. For example, sensors in a power quality network may

be separated by large distance geographically, but co-located through the electrical grid and the

grid’s topology.

Over time, Locality Phenomena is used to build a model of sensors in relation to each other

and to provide a statistical likelihood that co-located sensors will observe the same signal. Locality

Phenomena can be used to drive network triggering, detection, and classification thresholds within

a distributed sensor network by using this probabilistic model for determining the likelihood that

a sensor or sensors will observe a signal of interest.

The Locality of Incidents can be constantly tested. The main approach for determining locality

is combining a breadth first search (BFS) with Similarity Phenomena. When a new Incident is

generated, location metadata of the sensors is used to perform a BFS of all other sensors by latitude

and longitude. This is done because other sensors may have seen a similar signal of interest, but

did not trigger an Event due do the signal not passing any triggering thresholds. When an Incident

is triggered by a sensor or multiple sensors, for each sensor that was originally triggered a BFS is

used to trigger the nearest neighbor of each of the triggering sensors. The newly triggered data is

compared using Similarity Phenomena to determine whether the same signal was observed in the

newly triggered sensors. This process takes place recursively until sensors triggered by the BFS no

longer contain the signal of interest.

If Incidents are found using this approach, Locality Phenomena is created that references all

sensors that observed the same signal. These are classified as either local, semi-local, or global

depending on the reach of the signal of interest.

The BFS approach works well assuming the signal topology follows the geographic topology.

However, this is not always the case. An an example, a distributed power quality network is

constrained to the topology of the power grid which may now exactly match the geographic topology.

One of the questions of this dissertation is to determine whether a BFS approach is able to accurately

identify the locality of events on networks with constrained topologies.

It is possible to determine the locality of signals on networks with constrained topologies.

Similarity Phenomena not only look at the similarity of signals by their features, but can also

take into account similarity in time. In this way, Similarity Phenomena can mark Incidents as

statistically similar if they not only have similar features, but also occur “close together” in time.

This approach will not find signals that do not pass triggering thresholds, but it can identify the

locality of Incidents that happen on a constrained topology that would otherwise go unnoticed

using the BFS approach.

By understanding the general locality of Incidents and building a statistical model of sensors

that often display co-located Incidents, the Locality Phenomena is able to tune both the sensors

themselves and triggering thresholds for the network. As an example, let us say two sensors, A

22

and B, often observe the same signals of interest, but sensor B does not pass any of the triggering

thresholds for the DSN. Locality Phenomena can dynamically tune the triggering thresholds for

sensor B so that it does trigger on the signals of interest that would normally go unnoticed.

Locality Phenomena can also tune the sampling rate or send rate of features from sensors. Cer-

tain signals may only be observed at certain sampling rates due to the Nyquist-Shannon sampling

theorem[37] which states that signals with a frequency F can only be observed by sampling at at

a rate of 2F . Knowing that signals attenuate as a function of their distance from the source, the

sampling rate of sensors can be modified to ensure that signals of interest are captured at a variety

of distances from the signal source.

3.2.3 Periodic Phenomena

Periodic Phenomena consist of data that exhibits repetitive behavior, that is, the same types of

Measurements, Trends, Events, or Incidents appearing in cycles from single or multiple devices.

Periodicity allows for the easy creation of Future Phenomena.

Periodic Phenomena allow us to either tune our network to find periodic data or tune the

network to ignore periodic data depending on if the periodic signals are of interest. Periodic

Phenomena are especially useful in conjunction with Annotation Phenomena as Laha can assign

causality to the periodic signal.

Periodic Phenomena are identified using the following approach. Using a configurable interval,

the Periodicity Plugin loads Measurements and Trends for all active sensors over a configurable

time window. A time window of 24 hours (the default TTL of Measurements) is used to find

periodic signals in Measurements. A time window of two weeks (the default TTL of Trends) is

used to find periodic signals in Trends. Larger time windows can be used for Events, Incidents,

and Phenomena.

For each feature in the Measurement and Trend data (e.g. frequency, voltage, and THD),

the Periodicity plugin first removes the DC offset from the data by subtracting the mean. Next,

the plugin filters the signal using a 4th order high-pass filter to filter out noise. The plugin then

performs autocorrelation on the signal followed by finding the peaks of the autocorrelation. The

mean distance between the peaks of the autocorrelation (µ) provides the period of the signal.

Periodic Phenomena are instrumental in creating Future Phenomena. Periodic Phenomena are

used to create Future Phenomena which attempt to predict Incident arrivals at future dates. Peri-

odic Phenomena produce Future Phenomena for all devices that are shown to be periodic. Periodic

Phenomena will continue to produce Future Phenomena until consecutive Future Phenomena no

longer observe the predicted signals of interest.

23

3.2.4 Similarity Phenomena

Similarity Phenomena utilize grouping and community detection algorithms to group Incidents

together by their features. Common features used for grouping include time, location, Incident

type, Incident duration, or Incident features.

Similarity between signals in a DSN is a difficult problem. Signals attenuate as a function of

distance from the source and the topology of the network can also change the shape of the signals.

For instance, in a power quality network, signals may change as they pass through the power grid

and multiple electronic components. In an infrasound DSN, signals will attenuate based on distance

from the source and also change as the signals encounter physical obstacles in the environment (such

as hills, man made structures, or even weather patterns).

Because of these difficulties, we can not simply correlate two signals for similarity. Instead, this

Phenomena takes multiple approaches to providing statistical similarity between Incidents. The

main approach is comparing across high level features. These features include Incident duration and

Incident classification. Similarity Phenomena also utilizes Locality, Periodic, and Future Phenom-

ena as weights to determine whether the signals are similar. For example, if signals are periodic,

then we can assume that those signals are similar. If signals are local or co-local in reference to

Locality Phenomena, then it is more likely that they are similar than comparing two signals that

are not generally co-located. If signals are observed from Future Phenomena, then it is more likely

that they are similar to previous Incidents that were predicted using the same Phenomena.

To compare the similarity between signals, the above mentioned features are used in combination

with community detection algorithms to group similar feature sets. These groupings can be further

refined by correlating the signals, but due to the fact that the signal shape may change, these

features are weighted less than grouping by high-level features.

K-Means clustering is used on the high-level features to create clusters of related features based

on the distance from the mean values of those features. These features include a combination of

Incident duration, Incident classification, Incident magnitude, and Sensor location.

3.2.5 Future Phenomena

Future Phenomena are a statistical model of the likelihood of seeing an Incident or Incidents at

future points in time. Knowing that a signal may occur with some probability allows those affected

by those signals time to prepare for the signals.

Future Phenomena are created by a combination of other Phenomena types. The most useful

Phenomena for creating Future Phenomena are Periodic Phenomena which forecasts future Inci-

dents based off of periodicity. However, Future Phenomena also take into account other Phenomena.

For instance, Future Phenomena uses Locality Phenomena to automatically trigger predicted sen-

sors that often observe the same signals. In this way, Future Phenomena can identify signals of

interest that may have not passed various triggering thresholds.

24

Future Phenomena also make use of Annotation Phenomena to predict signals of interest that

have been Annotated. This provides actionable insights into the DSN to predict future causes of

signals of interest. As an example, instead of saying that the DSN predicts a voltage sag in a power

quality network, the DSN can predict a voltage sag due to a washer machine turning on in the

future, providing more context to the DSN.

Future Phenomena track three items. The first is a list of sensors that should observe a signal

in the future. The second is a list of future times at which a signal of interest should be observed.

The final item is a statistical weight that provides the likelihood of observing a future signal of

interest. The statistical weight I is given as floating point value between 0 and 1 with 1 being the

highest probability and 0 being the lowest probability.

Future Phenomena can also provide dynamic tuning of a DSN in multiple ways. It can either

be used to tune the DSN for signals of interest, or it can be used to filter out signals that the

user is not interested in. It does this by dynamically modifying the triggering thresholds of sensors

that are predicted to observe a signal of interest. In most cases, this means lowering the triggering

thresholds of those devices for the predictive time window, making those sensors more sensitive to

the expected signal. Future Phenomena can also alter the sample rate and/or receive rate of data

from the sensors themselves. The rate can be increased for the predicted time window which does

increase the data load, but also decreases the time taken to observe a signal of interest.

Future Phenomena can work the other way as well by increasing triggering thresholds and

decreasing sample rates for sensors that are not predicted to observe a signal of interest. In this

way, we can reduce the amount of network traffic, CPU utilization, and storage requirements for

the network. Of course, by doing this, we increase the odds of missing non-predictive signals of

interest. This is a trade-off we are willing to make since predictive signals of interest provide more

actionable information than random signals of interest.

3.3 Laha Actors: Acting on the Laha Data Model

Laha Actors act on the Laha hierarchy and provide one of two functions. Actors can move data

from one level of the hierarchy upwards through the hierarchy when interesting data is requested

by an upper level. Actors can also apply adaptive optimizations downwards through the hierarchy.

The Laha framework can support multiple actors at each level. For example, the Incidents Level

in our reference power quality network contains actors for each of the following functions: IEEE

classified voltage events, frequency variations, power outages, excessive THD, and many others.

The Incident Level Actors move data from these Incidents upwards to the Phenomena Level.

Table 3.3 summarizes the actors that exist within the Laha framework and their purposes.

25

Actor Purpose

IML Actors Perform feature extraction and move aggregate data to AML
AML Actors Perform triggering on data from IML, copy data to DL if interesting
DL Actors Perform high fidelity feature extraction on possible detections
IL Actors Perform classification and contextualization on possible detections
PL Actors Generate predictive analytics and optimize the lower levels of the hierarchy

Table 3.3: Summary of Laha Actors

3.3.1 Actor Constraints

Actors at each level in the hierarchy are governed by a set of constraints. These constraints include

the set of possible inputs, Ai, the set of possible outputs, Ao, the set of Actors it can receive data

from, Aai, the set of Actors it can transmit data to, Aao, and a set of performance metrics that each

actor must maintain, Ap. The constraints assigned to each Actor are determined by the hierarchy

level in which the Actor resides.

Actors are responsible for reporting constraint violations and in this way, Actors are the primary

provider of health, performance, and status metrics about the Laha framework.

The constraints for each level of Laha hierarchy is summarized in Table 3.4.

Level Ai Ao Aai Aao Ap

IML Raw samples Aggregate Trends n/a AML Data ranges avail-
able

AML Aggregate Trends Detections IML DL Data ranges avail-
able

DL Windowed wave-
forms

Hi-fi extracted fea-
tures

AML IL Data & features
available

IL Hi-fi extracted fea-
tures

Contextualized Inci-
dents

DL PL Incident types avail-
able

PL Contextualized Inci-
dents

Optimizations IL All levels Optimizations avail-
able

Table 3.4: Summary of Laha Actor Constraints at Each Level

3.4 OPQ: A Laha-compliant Power Quality DSN

OPQ Mauka is a middleware component of the Open Power Quality (OPQ) framework. The OPQ

project provides a hardware and software solution for monitoring distributed power quality (PQ).

The OPQ project was founded with the goal of studying how intermittent distributed renewable

energy sources affect PQ not just at a user’s home, but also within a user’s neighborhood, between

26

Figure 3.1: OPQ System Diagram

neighborhoods, and globally across the grid.

The OPQ ecosystem is made up of networked hardware sensors (OPQ Boxes) and various

software services (OPQ Makai, OPQ Mauka OPQ Health, OPQ View). Each of these software

components are made up of individual services and plugins. The entire software system is deployed

as Docker [16] containers.

The OPQ system design is laid out in Figure 3.1.

3.4.1 OPQ: Boxes

An OPQ Box is a custom designed PQ sensor. OPQ Boxes can be plugged into a wall outlet

and communicate with OPQ servers using the user’s WiFi connection. OPQ Boxes consist of

a Raspberry PI single board computer (SBC), a custom board for PQ measurements, custom

firmware, and a custom enclosure. The custom board contains an ADC that samples an alternating

current (AC) power signal at 12 thousand samples per second. This data is transferred to the

Raspberry Pi where feature extraction and data transfer takes place. The hardware design is

presented in Figure 3.2 and the software design is provided in Figure 3.3.

The feature extraction algorithms extract from the sampled waveform the following features:

windowed VRMS , frequency, and total harmonic distortion (THD) features. The feature extracted

data is then sent to a central sink where further analysis is used to determine whether the sensor

or a subset of sensors should be triggered for raw data.

The OPQ network is a hybrid network that uses edge computing for calculating features at the

edge of the network. This is opposed to networks that utilize a “send everything” approach. In

this way, Laha is able to minimize bandwidth.

OPQ Boxes are synchronized to each other and the OPQ back end using the network time

protocol (NTP). This provides synchronization to the millisecond level, which although is great for

longer Incidents, does not provide accurate timing for transients that may be shorter than tens of

milliseconds.

3.4.2 OPQ: Makai

OPQ Makai is the central sink and triggering daemon for the OPQ framework. It is made up of

several services which are responsible for aggregating and processing the Measurements generated

27

Figure 3.2: OPQ Box Design

Figure 3.3: OPQ Box Software

28

by OPQ Boxes. Low fidelity feature extracted data consisting of VRMS , frequency, and THD are

streamed from OPQ Boxes at a configurable message rate. These data streams are observed by OPQ

Makai and the daemon uses statistical methods and configurable thresholds to determine whether

the sensor or a subset of sensors should be triggered for a window of raw sampled waveforms.

Dynamic Triggering

While Makai is mostly implemented by my colleague Sergey Negrashov, I implemented my own

triggering logic into Makai to trigger PQ Events. This threshold based triggering is written as a

Rust [57] plugin for Makai’s TriggeringService. The plugin receives a stream of Measurements of

OPQ Boxes. Each Measurement contains min, max, and average values for frequency, voltage, and

THD over the Measurement’s time window.

This plugin checks if a Measurement stream from a Box passes minimum or maximum thresholds

for the Measurement’s features. Thresholds are provided in the Mongo database in the collection

“makai config”. The thresholds are provided as minimum and maximum percentages from nominal.

For example, the database provides values for nominal voltage and frequency (120V and 60Hz

respectively) and thresholds for minimum and maximum percentage from nominal for voltage and

frequency. It also checks the maximum percent of THD from 0.

Not only does the database provide default dynamic thresholds for all devices, but it also in-

cludes threshold overrides for individual devices. Override thresholds contain the same information

as default thresholds, but also include a box id. When loading thresholds for a device, if an override

does not exist, then default thresholds are used. If an override does exist, then the thresholds from

the override are used.

All thresholds are cached for performance reasons. Values from Measurements are compared to

these cached thresholds. This is needed so that this plugin does not have to request the thresholds

from the database on every Measurement from every Box. Instead, cached values are used. The

cache is updated at a configurable interval but defaults to once a minute.

Thresholds are dynamic and can be modified by the “ThresholdOptimizationPlugin” (described

in Section 3.4.3) in Mauka.

This plugin utilizes a finite state machine (FSM) which maintains the triggering state for each

feature for each Box. There are only three states, “Check Metrics”, “Metrics Non-Nominal” and

“Trigger Sensor”. If a feature for a Box passes a minimum or maximum threshold for a Box

feature, then the state for that feature moves from the “Check Metrics” state into the “Metrics

Non-Nominal” state. The “Metrics Non-Nominal” state remains in effect until the data is no longer

passing the threshold, at which time, a trigger is sent to the sensors requesting data for the time

window of the entire “Non-Nominal” state. Once the trigger has been made, the state transitions

back into the “Check Metrics” state.

From here, Makai handles Event storage and notification of the triggered Boxes.

29

Figure 3.4: Threshold Triggering FSM States

Figure 3.4 provides an overview of the states that are managed by the FSM.

TTL Provider Service

Time-to-Live (or TTL) is a metric for defining when documents in the Mongo database should be

garbage collected. The TTL metric is stored dynamically in the MongoDB collection “laha config”.

A TTL metric is provided for each collection and the value represents the number of seconds after

document creation that that document should be garbage collected. TTLs are dynamically managed

by Mauka’s “TtlOptimizationPlugin” (described in Section 3.4.3). The actual garbage collection

itself is provided by Mauka’s “LahaGcPlugin” (Section 3.4.3).

TTLs are assigned in Makai to Measurements, Trends, and Events since Makai handles storage

for these collections. Because TTLs are dynamic and can be updated by Mauka at any time, a

cached TTL provider service was created to provide performant access to TTLs in the database.

This service loads the TTLs from the database and caches those values for a configurable amount

of time (which defaults to one minute). The cache enables Makai to assign TTLs without hitting

the database for every Measurement, Trend, and Event that it creates. If a TTL is updated by

Mauka, then the cached value will expire after a configurable amount of time and the new TTL

will be cached and used until the next cache invalidation.

This service lives within Makai and was written in Rust.

Event Id Service

Event Ids are used to uniquely identify Events produced by either Makai or Mauka. We need to

ensure that Event Ids are unique between services and monotonically increasing. This constraint

requires that a single source of truth provide the Event Ids to avoid race conditions between Makai

and Mauka. The EventId Service is a service written in Rust that resides in Makai’s Event Broker.

30

Figure 3.5: Event Id Service

The service wraps an atomic integer and provides thread-safe access to this integer. The service

allows any other service within Laha to peak at the current highest Event Id and to also increment

and get the next highest available Event Id. When this service is initialized, it queries the MongoDB

for the highest Event Id in the database. All other requests to this service will increment the atomic

integer and use that value for the next Event Id. In this way, the database only needs to be queried

once on initialization and all other operations are on the atomic integer.

This service can be passed directly into Makai’s Event Broker using automatic reference counting

(ARC). To enable Mauka to access this service, the same service is passed into a ZMQ thread using

ARC. The ZMQ thread provides a ZMQ REP endpoint for requesting atomic Event Ids from this

service. An example of Mauka requesting the Event Id from Makai is described in Section 3.4.3.

A high level overview of the Event Id Service is provided in Figure 3.5.

3.4.3 OPQ: Mauka

OPQ Mauka (or just Mauka) is a middleware component of the OPQ system that provides higher

level analytics on PQ data as well as a platform for managing data volume, providing actionable

insights into the network, optimizing the network, and providing PQ based Phenomena. Most

importantly, Mauka provides most of the functionality that makes OPQ a Laha-compliant DSN.

Mauka sits between Makai and OPQ’s database. It receives messages from Makai when Makai

has triggered OPQ Boxes due to something interesting in the low-fidelity data stream. Mauka then

31

retrieves the raw waveforms stored in the database by Makai, performs feature extraction, and then

forwards the features and/or raw waveform to various plugins to perform classification and other

high level analytics. These results are then stored in our database and presented to users in OPQ

View.

Mauka was written entirely in Python 3.7[54] and relies on various scientific libraries for an-

alytics. These include SciPy[32], numpy[47], matplotlib[30], and scikit-learn[40]. Communication

between processes are accomplished with the ZeroMQ[78] library. Messages are serialized using

Protocol Buffers[23]. The Mauka code base consists of over 9,594 lines of Python code split over 45

Python modules. The code base is licensed under the GNU General Public License (GPL) version

3[62]. Mauka is hosted and publicly accessible at OPQ’s github repository[10].

Mauka was designed as a distributed set of processes that communicate via type-safe message

passing. Most functionality in Mauka is implemented as plugins where each plugin runs in its own

process, providing horizontal scalability. The direction of communication between plugins can be

modeled by a directed acyclic graph (DAG). The DAG property of Mauka plugins ensures easy

horizontal scalability by making it possible to trivially create many distributed instances of plugins

to meet the computational load.

The following sections will detail all components and functionality provided by Mauka.

Mauka Communication

ZeroMQ is used to facilitate communication between Mauka and Makai and also between plugins

within Mauka. ZeroMQ is a light-weight message queue that provides libraries for many program-

ming languages. ZeroMQ makes it easy to create many different types of communication topologies.

However, Mauka mainly makes use of publish/subscribe and push/pull topologies. ZeroMQ is pro-

vided to Python using the pyzmq library.

In publish/subscribe, any producer can produce messages where each message contains a topic

and a payload. Subscribers are then able to subscribe (or listen to) topics of interest and only

ingest messages for topics that they are subscribed to.

The push/pull model on the other hand provides unidirectional message flow from a single

pushed to a single puller. Using these two types of communications models in conjunction provides

the entire communications backbone for Mauka.

To facilitate communication between Mauka and Makai and between Mauka plugins, two com-

munications brokers are provided. Brokers are separate processes whose only jobs are to manage

moving typed messages from a source destination to multiple target destinations.

The first broker, the Makai Event Bridge broker, is responsible for subscribing to a ZeroMQ

endpoint provided by Makai. This bridge is used to pass Event Ids created by Makai into Mauka,

alerting Mauka to the presence of new data in the database to analyze. When the message is

received by the broker, it is transformed into a Mauka Message and published to the second broker,

32

Figure 3.6: OPQ Mauka Brokers Communication Diagram

the Mauka Pub Sub Broker, and then broadcast to any subscribing plugins. Mauka plugins that

subscribe to Event Ids then use the Event Id to look up the associated raw waveforms in the

database to perform analysis.

The second broker, the Mauka Pub Sub broker facilitates message passing between all other

parts of the Mauka ecosystem. All messages in this system are published to this broker, and all

plugins subscribe to topics provided by this broker. In essence, this broker is used to route type

safe messages between distributed components of this system. By using pub/sub and a broker, the

plugins only need to worry about one communication endpoint instead of knowing exactly where

each plugin lives in the network and how to address it individually.

Figure 3.6 provides a high level view of how the brokers facilitate communication between Makai

and Mauka as well as between Mauka plugins.

One down side to this approach is that the brokers become single points of failure. I believe

that this issue is minimized by using the production proven ZMQ backend for communications. I

have also never experienced failures in the broker during data collection or normal system usage.

Mauka Communication Protocol

The messages that are passed using ZeroMQ are serialized using the type safe protocol buffers (v3)

format. Protocol buffers provide efficient binary serialization/deserialization routines for structured

data and can be used from a multitude of programming languages.

Mauka provides a single message type, “MaukaMessage”, that includes many subtypes. All mes-

sages passed within Mauka are of the instance MaukaMessage and may include different subtypes.

The MaukaMessage protocol is described in detail in the following tables.

The “MaukaMessage” (Table 3.5) type contains a timestamp, source, and a union type which

can contain multiple types of type safe messages. Every plugin within Mauka sends and receives

33

MaukaMessages and the plugin is responsible for checking the type of the “message” field and

acting on it.

Field Type Description

timestamp ms uint64 Timestamp of message creation.

source string Name of plugin that produced this

message.

message oneof (Payload, Heartbeat,

MakaiEvent, Measurement,

MakaiTrigger, Laha, TriggerRe-

quest, ThresholdOptimizationRe-

quest, RateOptimizationRequest,

TtlOptimizationRequest, Request)

A union of subtypes.

Table 3.5: MaukaMessage

The “Payload” (Table 3.6) variant of message contains data payloads cast to 64-bit precision

floating point numbers. This allows us to work with data of multiple type by assuming all data

payloads can be cast to 64-bit floats. This message also contains metadata relating to where the

data came from, timing information, and a type safe enumeration describing the type of data stored

in the payload.

Field Type Description

event id uint32 Event that this payload originated from.

box id string Box that this payload originated from.

data [f64] An array of data cast to double precision floats.

payload type PayloadType Enumeration providing payload type information.

start timestamp ms uint64 Start timestamp of first payload element

end timestamp ms uint64 End timestamp of last payload element

Table 3.6: Payload

The “PayloadType” (Table 3.7) variant is an enumeration that describes the type of data stored

in any provided payload.

34

Field Value Description

ADC SAMPLES 0 ADC waveform samples from the Box.

VOLTAGE RAW 1 Raw waveform voltage obtained by divid-

ing ADC values by a calibration constant.

VOLTAGE RMS 2 RMS waveform obtained by dividing raw

voltage by sqrt(2).

VOLTAGE RMS WINDOWED 3 RMS extracted feature array.

FREQUENCY WINDOWED 4 Frequency extracted feature array.

Table 3.7: PayloadType

The “Heartbeat” (Table 3.8) variant is a message that is periodically sent from each plugin

providing statistics about plugin health.

Field Type Description

last received timestamp ms uint64 Last time a plugin on message was fired.

on message count uint32 The amount of times on message has been fired.

status string Custom status message that plugin can override.

Table 3.8: Heartbeat

The “MakaiEvent” (Table 3.9) variant is a message which includes the “event id” of a newly

created Event from Makai. This message is received by the “MakaiEventPlugin” and is used to

begin processing new Events within Mauka generated by Makai.

Field Type Description

event id uint32 The Event number that Makai has recorded.

Table 3.9: MakaiEvent

The “Measurement” (Table 3.10) variant is a message that contains an Instantaneous Measure-

ment which includes a timestamp, voltage, frequency, and THD metrics.

35

Field Type Description

box id string Box that this Measurement came from.

timestamp ms uint64 Timestamp that this Measurement was recorded.

frequency double The instantaneous frequency of this Measurement.

voltage rms double The instantaneous RMS voltage of this Measurement.

thd double The instantaneous THD of this Measurement.

Table 3.10: Measurement

The “MakaiTrigger” (Table 3.11) variant is a message type that is used to send to Makai in

order for Mauka to trigger Boxes for raw data. This is used when Mauka sees something interesting

and wishes to request more data than what was originally provided by Makai.

Field Type Description

event start timestamp ms uint64 The start timestamp of the trigger.

event end timestamp ms uint64 The end timestamp of the trigger.

event type String A string description of the Event (or reason) we are trig-

gering Boxes.

max value double The maximum value of “event type” observed in the trig-

gering stream.

box id String The OPQ Box Id.

Table 3.11: MakaiTrigger

The “Laha” (Table 3.12) message variant contains multiple types of messages all relating to

Laha. These include messages for managing TTL, garbage collection, and Laha based statistics.

Field Type Description

laha type Oneof (Ttl, GcTrigger, GcUpdate, Gc-

Stat)

Sum type that contains multiple sub-

types.

Table 3.12: Laha

The “Ttl” (Table 3.13) Laha message variant is used to dynamically specify TTLs for the

provided collection.

36

Field Type Description

collection String The data collection type that should have its TTL updated.

ttl s uint32 The number of seconds that a collection should have its TTL set to.

Table 3.13: Ttl

The “GcTrigger” (Table 3.14) variant is a message that is sent to the GC plugin to notify it

that GC should be performed on the domains specified in the message.

Field Type Description

gc domains [GcDomain] The data collection type that should have its TTL updated.

Table 3.14: GcTrigger

The “GcDomain” (Table 3.15) enum is used to specify a garbage collection domain within Laha.

Field Value Description

MEASUREMENTS 0 Laha Measurements.

TRENDS 1 Laha Trends.

EVENTS 2 Laha Events.

INCIDENTS 3 Laha Incidents.

PHENOMENA 4 Laha Phenomena.

SAMPLES 5 Laha samples.

Table 3.15: GcDomain

A “GcUpdate” (Table 3.16) variant is a message that informs the GC plugin to update the TTL

for a particular document and all documents living under it.

Field Type Description

from domain GcDomain The GcDomain from which this update originated. All collections

under this domain are also updated.

Id uint32 The Id of the document that should have its TTL updated.

Table 3.16: GcUpdate

A “GcStat” (Table 3.17) variant message is a message that contains statistics on the number

of items garbage collected from a particular GcDomain.

37

Field Type Description

gc domain GcDomain The GcDomain from which this statistic originated.

gc cnt uint64 The count of items garbage collected on the last GcTrigger message.

Table 3.17: GcStat

A “TriggerRequest” (Table 3.18) variant message is a message that is instantiated by Phenomena

and sent to the “TriggerPlugin” enabling Mauka to directly trigger OPQ Boxes for raw data.

Field Type Description

start timestamp ms uint64 Start time of data request.

end timestamp ms uint64 End time of data request.

box ids [string] An array of Boxes to request data from.

incident id uint64 The original Incident leading to this trigger request.

Table 3.18: TriggerRequest

A “ThresholdOptimizationRequest” (Table 3.19) variant message is a message that is created

by Phenomena and sent to the “ThresholdOptimizationPlugin” to dynamically modify default or

override thresholds values for Makai’s threshold triggering plugin.

38

Field Type Description

default ref f f64 Default reference frequency

default ref v f64 Default reference voltage

default threshold percent f low f64 Default frequency percent low threshold

default threshold percent f high f64 Default frequency percent high threshold

default threshold percent v low f64 Default voltage percent low threshold

default threshold percent v high f64 Default voltage percent high threshold

default threshold percent thd high f64 Default THD percent high threshold

box id str Override Box Id

ref f f64 Override reference frequency

ref v f64 Override reference voltage

threshold percent f low f64 Override frequency percent low threshold

threshold percent f high f64 Override frequency percent high threshold

threshold percent v low f64 Override voltage percent low threshold

threshold percent v high f64 Override voltage percent high threshold

threshold percent thd high f64 Override THD percent high threshold

Table 3.19: ThresholdOptimizationRequest

A “RateOptimizationRequest” (Table 3.20) variant message is a message that is instantiated

by Phenomena and sent to the “RateOptimizationPlugin” enabling Mauka to dynamically modify

the receive rate of Measurements and Trends for specified Boxes.

Field Type Description

box id str The Id of the Box to change the receive rate for

measurements hz f32 Measurements per second

Table 3.20: RateOptimizationRequest

A “TtlOptimizationRequest” (Table 3.21) variant message is a message that is instantiated by

Phenomena and sent to the “TtlOptimizationPlugin” enabling Mauka to dynamically modify the

TTL of collections stored in the “laha config” collection.

Field Type Description

collection name str Collection to modify the TTL for

ttl int32 New TTL for the defined collection in seconds

Table 3.21: TtlOptimizationRequest

39

Figure 3.7: OPQ Mauka Communications Protocol Summary

Figure 3.7 displays all types used and their variants for the Mauka communications protocol.

Makai Communications Protocol

Most communication takes place inside of Mauka, however there are several communications chan-

nels that occur from Mauka to Makai. These include requesting Event Ids, sending triggers, and

sending Box data rate commands. The communications protocols for these actions are described

in this section.

Requesting Event Ids from Makai’s Event Id Service is performed over a REQ/REP ZMQ

socket. Requests from the client should be an empty string. Replies from the host should be a

string that only includes the event id.

The “Command” message (Table 3.22) is the base message used for sending commands to Makai

and subsequently OPQ Boxes.

Field Type Description

seq uint32 The command sequence number

box id int32 The Box Id this command references

timestamp ms uint64 The timestamp of this command

identity str The formatted identity for this com-

mand

command oneof(GetInfoCommand, GetDat-

aCommand, SetMeasurementRate-

Command, SendCommandToPlugin)

Command variant

Table 3.22: Command

The “GetDataCommand” message (Table 3.23) is sent with a “Command” message when Mauka

wants to trigger Boxes for data.

40

Field Type Description

start ms uint64 The start timestamp of the data request.

end ms uint64 The end timestamp of the data request.

wait bool If set, the Box will wait to send data if timestamps are in the future.

Table 3.23: GetDataCommand

The “SetMeasurementRateCommand” (Table 3.24) message is sent with a “Command” message

when Mauka wants to modify the Measurement rate of OPQ Boxes.

Field Type Description

measurement window cycles uint32 How many grid cycles to process per Measurement.

Table 3.24: SetMeasurementRateCommand

Plugin Manager

Plugins within Mauka are managed using a “Plugin Manager”. The Plugin Manager is responsible

for starting, loading, unloading, reloading, terminating, and general management of Mauka plugins

at runtime.

The Plugin Manager provides a networked command line interface (CLI) which communicates

with the Plugin Manager’s ZeroMQ endpoint which is utilized for sending commands and receiving

responses to and from the Plugin Manager from any networked device. The CLI uses synchronous

request/reply semantics where the client requests a message to the Plugin Manager and the Plugin

Manager responds with a response.

The plugin manager can also be used as a library from within Mauka itself accessing the same

functionality that is provided by the networked CLI. This functionality is used to initialize the set

of plugins that are set to start when Mauka first starts.

Table 3.25 commands can be issued from a networked CLI client to interact with the Plugin

Manager.

It is important to note some distinctions between the commands. Loading a plugin means

loading a plugin from disk into memory where unloading means removing the plugin from memory.

Enabling a plugins means that the plugin is loaded and enabled for running. Disabling a plugin

means that the plugin is still loaded, but not enabled for running. Starting a plugin means to start

a new process for a loaded and enabled plugin where stopping a plugin means to stop a current

process and return it to an enabled and loaded state. Killing a plugin uses the OS to send a

SIGKILL signal to the process for when its misbehaving and not stopping cleanly on its own.

41

Command Arguments Description

completions Returns a list of completions for auto-complete.

disable-plugin Plugin name Disables the named plugin.

enable-plugin Plugin name Enables the named plugin.

help Displays the help text.

kill-plugin Plugin name Kills the named plugin.

load-config Configuration path Reloads the configuration from file.

load-plugin Plugin name Loads (or reloads) a plugin from disk.

list-plugins Lists all loaded plugins.

start-plugin Plugin name Starts the named plugin.

stop-plugin Plugin name Stops the named plugin.

stop-all-plugins Stops all running plugins.

restart-plugin Restarts the named plugin.

unload-plugin Plugin name Unloads the named plugin.

Table 3.25: Plugin Manager CLI Reference

Mauka Configuration

Mauka is highly configurable and it loads various static and dynamic configurations. Static configu-

rations, or configurations that are loaded when Mauka starts are provided by a JSON file. Dynamic

configurations related to TTL and garbage collection are stored in the MongoDB and are discussed

in detail in Section 3.4.3.

Mauka Data Models

Mauka works directly with the following data models: Measurements, Trends, Events, BoxEvents,

Incidents, and Phenomena. The data models for these collections are described in this sections.

The Measurements collection contains Instantaneous Measurements produced by Makai. The

data model for Measurements is described in Table 3.10.

42

Field Type Description

box id str OPQ Box Id

timestamp ms int Timestamp of the Measurement in milliseconds

expire at int The timestamp in seconds that this document should be garbage col-

lected

frequency float The instantaneous frequency Measurement in Hz

voltage float The instantaneous voltage Measurement

thd float The instantaneous THD Measurement as a percentage

Table 3.26: Measurement Data Model

The Trends collection provides summary statistics of frequency, voltage, and THD over a con-

figurable time window. The data model for the Trends collection is given in Table 3.27.

Field Type Description

min (thd, frequency, voltage) float Minimum values for THD, frequency, and

voltage

max (thd, frequency, voltage) float Maximum values for THD, frequency, and

voltage

average (thd, frequency, voltage) float Mean values for THD, frequency, and volt-

age

box id str OPQ Box Id

timestamp ms int Timestamp of end of Trend in milliseconds

location str Location slug from the location that this

Trend originated from

expire at int Timestamp in seconds that this document

should expire after

Table 3.27: Trend Data Model

The Events collection contains metadata that map a Makai triggered Event to a list of box events

which points to raw data for each Box that was requested raw data for that Event. The Event data

model is described in Table 3.28.

43

Field Type Description

event id int Id of the Event generated

description str Description of the Event

boxes triggered [str] A list of box ids that were triggered from this Event

boxes received [str] A list of box ids that data was received from

target event start timestamp ms int Start of the Event

target event end timestamp ms int End of the Event

expire at int Timestamp that this document should expire after

Table 3.28: Event Data Model

The box events data model is described in Table 3.29.

Field Type Description

event id int ID of the Event this box event refers to

box id str ID of the OPQ Box that sent data for this Event

event start timestamp ms int Timestamp of the start of the Event for this Box

event end timestamp ms int Timestamp of the end of the Event for this Box

data fs filename str Reference to the waveform stored in gridfs

location str Location slug of where this Box sent data from

Table 3.29: BoxEvent Data Model

The Incidents collection keeps track of Incidents as defined by Laha. This collections includes

metadata for classification and other contextual information relating to power Incident. The Inci-

dent collection data model is described in Table 3.30.

44

Field Type Description

incident id int ID of the Incident

event id int ID of the Event this Incident references

box id str ID of the OPQ Box that this Incident references

start timestamp ms int Start of this Incident

end timestamp ms int End of this Incident

location str Location slug of where this Incident originated from

measurement type str A description of the Measurements used in this Inci-

dent

deviation from nominal float The maximum deviation from nominal for the pro-

vided measurement type

measurements [Measurement] List of Measurements stored in this Incident

gridfs filename str Location in gridfs that the waveform for this Incident

is stored

ieee duration str An IEEE1159 duration

annotations [str] A list of annotations added to this Incident

metadata object Metadata associated with this Incident

expire at int This Incident should expire after this timestamp

Table 3.30: Incident Data Model

The “ground truth” stores samples collected from the UH installed power meters. This collec-

tion is used to compare Measurements and Trends from OPQ Boxes to the ground truth measured

by the UH meters. Each ground truth document consists of meter name, the feature stored, and

descriptive statistics for that feature. The “ground truth” data model is described in Table 3.31.

Field Type Description

meter-name str Name of the meter this sample is from.

sample-type str Name of the feature present in this sample.

ts-s int The timestamp of this sample in seconds.

min float The minimum value of this feature over the time window.

max float The maximum value of this feature over the time window.

avg float The average value of this feature over the time window.

stddev float The standard deviation of values over the time window.

Table 3.31: Ground Truth Data Model

The “laha config” collection contains dynamic configuration options that Phenomena can alter.

45

The collection is mainly used for defining the default TTL of collections that Mauka manages. The

“laha config” data model is described in Table 3.32.

Field Type Description

box samples int Default TTL of Box samples.

Measurements int Default TTL Measurements.

Trends int Default TTL Trends.

Events int Default TTL Events and box events.

Incidents int Default TTL Incidents.

Table 3.32: Laha Config Data Model

The “laha stats” collection contains system statistics that measure various performance metrics

in relation to Laha’s optimizations. The full details of the “laha stats” collection are provided in

Section 3.4.3.

The “makai config” collection contains default and Box override thresholds used by Makai’s

threshold triggering plugin. These items can be dynamically modified by the “ThresholdOptimiza-

tionPlugin” (Section 3.4.3).

Field Type Description

default ref f f64 Default reference frequency

default ref v f64 Default reference voltage

default threshold percent f low f64 Default frequency percent low

threshold

default threshold percent f high f64 Default frequency percent high

threshold

default threshold percent v low f64 Default voltage percent low

threshold

default threshold percent v high f64 Default voltage percent high

threshold

default threshold percent thd high f64 Default THD percent high thresh-

old

triggering overrides [MakaiConfigOverride] List of Box specific overrides

Table 3.33: Makai Config Data Model

46

Field Type Description

box id str Override Box Id

ref f f64 Override reference frequency

ref v f64 Override reference voltage

threshold percent f low f64 Override frequency percent low threshold

threshold percent f high f64 Override frequency percent high threshold

threshold percent v low f64 Override voltage percent low threshold

threshold percent v high f64 Override voltage percent high threshold

threshold percent thd high f64 Override THD percent high threshold

Table 3.34: Makai Config Override Data Model

The “phenomena” collection contains metadata relating to Phenomena produced by Mauka.

The data model for Phenomena is provided in Table 3.35.

Field Type Description

phenomena id int Id of the Phe-

nomena

related incident ids [int] List of related In-

cident Ids.

related event ids [int] List of related

Event Ids.

affected opq boxes [str] List of OPQ

Boxes affected

by this Phenom-

ena.

start ts ms int Start time of the

Phenomena.

end ts ms int End time of the

Phenomena.

phenomena type:

Object

Metadata and parameters for specific Phenomena types.

Table 3.35: Phenomena Data Model

47

PQ Plugins

Mauka’s functionality is provided by plugins that perform analysis, data management, health, and

system tuning. Communication within Mauka is performed using type safe message passing. This

section describes in detail how each plugin functions and also documents each plugins inputs and

outputs.

BasePlugin. All plugins derive from a single “BasePlugin”. The BasePlugin provides primitives

for running plugins as separate processes, serialization and deserialization of type safe messages,

communication over ZeroMQ, metrics collection, MongoDB communication, debugging, and plugin

health.

To support running plugins as separate processes, the BasePlugin provides a “run plugin”

method that instantiates the new plugin inside of a new process. The BasePlugin provides sig-

nal handlers to catch SIGKILL and SIGINT signals from the system and cleanly exit the plugin

process. The BasePlugin also contains an “exit event” which can be set from other processes to

inform the plugin to exit cleanly. This is used when Mauka is cleanly shutdown or when a plugin

is stopped from the PluginManager.

When a BasePlugin process is started, the plugin creates a timer that runs at a configurable

interval. When the timer fires, a heartbeat for the subclassing plugin is produced. This provides

health information for each plugin within Mauka.

The BasePlugin provides automatic serialization and deserialization of protobuf Mauka messages

produced and received for each plugin.

The BasePlugin provides functionality for automatically serializing and deserializing waveform

from MongoDB’s gridfs.

The BasePlugin provides ZMQ endpoints for producing and consuming messages to and from

topics for each plugin. The BasePlugin ensures that all accesses to brokers are handled atomically

with multiprocessing locks.

The BasePlugin keeps track of the number of messages sent and received for each plugin as

well as the number of bytes sent and received for each plugin. This information is included in each

plugin’s heartbeat and later uses for calculating and storing metrics for each plugin.

The BasePlugin uses the configurable debugging interface to selective display debug messages

for a plugin. Debug messages are only displayed for plugins that are configured to display debug

messages in Mauka’s configuration.

The BasePlugin provides a MongoDB client for each plugin for reading and writing to the

database.

MakaiEventPlugin. The “MakaiEventPlugin” is responsible for reading Events newly created

by Makai into Mauka. It performs feature extraction on the raw Event data streams and forwards

48

those features (or the raw data) to subscribing plugins. This allows Mauka to perform the important

feature extraction once, and reuse those features in multiple plugins.

The MakaiEventPlugin subscribes to messages from with the subject “MakaiEventMessage”.

These messages are described in Table 3.9. When a message is received, the plugin waits a config-

urable amount of time to ensure that Makai has finished writing data to the database. Once the

data is in the database, the plugin loads the raw data and performs feature extraction.

The raw waveform from the OPQ Box is serialized into a Payload (Table 3.6) with PayloadType

(Table 3.7) “ADC SAMPLES” and produced to the topic “AdcSamples”.

The raw voltage is calculated by dividing each sample of the raw waveform by the calibration

constant loaded from the database that is set for each device. The raw voltage is serialized into a

Payload (Table 3.6) with PayloadType (Table 3.7) “VOLTAGE RAW” and produced to the topic

“RawVoltage”.

Vrms is the peak-to-peak voltage over a configurable time window. By default, Mauka uses a

time window of one electrical cycle at 60Hz which works out to be 1/60 seconds. Vrms is calculated

by moving a running window over the raw voltage waveform. The computation of Vrms for each

window with n samples is given by Equation 3.1. The RMS voltage is serialized into a Payload

(Table 3.6) with PayloadType (Table 3.7) “VOLTAGE RMS WINDOWED” and produced to the

topic “RmsWindowedVoltage”.

VRMS =

√∑n
i=0 n

2
i

n
(3.1)

Windowed frequency is the frequency calculated for a configurable time window. By default,

Mauka uses a time window of one electrical cycle at 60Hz which works out to be 1/60 seconds.

The frequency is calculated by first smoothing the raw voltage waveform by applying a 4th order

Butterworth filter to the waveform with a cutoff frequency of 500Hz and a down sampling rate of

2. Then, a window is moved across the smoothed signal and the frequency is calculated for each

window by performing a least squares regression and fitting a sinusoide. The windowed frequency is

serialized into a Payload (Table 3.6) with PayloadType (Table 3.7) “FREQUENCY WINDOWED”

and produced to the topic “WindowedFrequency”.

When new Events are received by the MakaiEventPlugin, a GcUpdate (Table 3.16) message

is produced informing the LahaGcPlugin that all “measurements” and “trends” stored by Makai

should receive a TTL of the newly created Event.

FrequencyVariationPlugin. The “FrequencyVariationPlugin” is used to classify generic fre-

quency sags, swells, and interruptions as defined by the IEEE1159 standard[29]. Both duration

and deviation from nominal are used to perform these classifications. Duration classifications in-

clude frequency deviations that last for less than 50 ns, between 50 ns to 1 ms, and 1 ms to 50 ms.

Classifications for deviations from nominal are performed for values that are up to 40% deviation

49

nominal. The plugin subscribes to messages from the “WindowedFrequency” topic which includes

a payload of frequency features over one electrical cycle.

When a message is received, the plugin uses configurable thresholds to find frequency fluctu-

ations within the windowed frequency streams. The plugin is able to classify frequency swells,

frequency interruptions, and frequency sags. When a new frequency variation is detected, a fre-

quency Incident is created and a GC UPDATE message is sent to the LahaGcPlugin to update the

TTL of all Measurements, Trends, and Events that belong to this new Incident.

IEEE1159VoltagePlugin. The “IEEE1159VoltagePlugin” is a plugin that is able to classify

voltage Incidents in accordance to the IEEE1159 standard[29]. In general, this standard classifies

voltage disturbances by duration and by magnitude. voltage durations are classified from 0.5 to

30 cycles, 30 cycles to 3 seconds, 3 seconds to a minute, and greater than 1 minute. voltage

deviations are classified in both the sag and swell directions as a percentage from nominal. Sags

are generally classified between 10% and 90% of nominal while swells are generally classified from

110% to 180% of nominal. The plugin subscribes to messages from the “RmsWindowedVoltage”

topic which includes payloads of VRMS features over a window of one electrical cycle.

This plugin is capable of classifying voltage sags, swells, and interruptions as defined by the

standard. The plugin works by identifying sags, swells, and interruptions and determining the

duration of those Events. If the duration or delta is large enough, a voltage Incident is created

and a GC UPDATE message is sent to the LahaGcPlugin asking it to update the TTL for all

Measurements, Trends, and Events that belong to this new Incident.

AnnotationPlugin. The “AnnotationPlugin” is responsible for creating and storing Annotation

Phenomena within Mauka. The Annotation Plugin subscribes to “AnnotationRequest” messages

which include a start and end timestamp, a list of affected OPQ Boxes, a list of related Event Ids,

and a list of related Incident Ids.

When an AnnotationRequest is received, the request is parsed and the data is stored and

structured in the database using the Phenomena data model.

At the time of writing, AnnotationRequests are generated manually and inserted into the system

using the MockPlugin which allows any type of message to be constructed and produced to any

other plugins. Annotations are created when users of the OPQ network can correctly identify the

source of a PQ signal.

BoxOptimizationPlugin. The “BoxOptimizationPlugin” is responsible for sending and receiv-

ing typed messages to and from OPQ Boxes from OPQ Mauka. This plugin is capable of requesting

the state of each OPQ Box (e.g. uptime, Measurement rate, security keys, etc). This plugin is also

capable of adjusting the state of individual OPQ Boxes by changing things such as the Measurement

and Trend rate or the sampling rate that the Box is sampling at.

50

This plugin subscribes to two topics, “BoxOptimizationRequest” and ”BoxMeasurementRateRequest”.

When a BoxOptimizationRateRequest is received by the plugin, the plugin queries the Boxes spec-

ified in the request for data about their state. Because this is completely asynchronous, a separate

thread is spawned to receive the response from the Boxes. When a response is received in the

spawned thread, the response is produced to any plugins that are subscribed to the response and

interested in the result.

When a BoxMeasurementRateRequest is received, the plugin sends a message to all Boxes

marked in the request along with new Measurement and Trends rates (in cycles) that the Box

should adjust to use. It is important to note that Makai caches these values for a maximum of

one minute. Therefore, to adjust the Measurement or Trend rate at time T , the adjustment should

really take place at T−60 so that the new value is utilized by the Box and not the cached value over

the duration of change. Once the rates have been changed, the Box sends an asynchronous response

back to Mauka which is received in a separately spawned thread, a MeasurementRateResponse is

created and forwarded to interested plugins.

FuturePhenomenaPlugin. The “FuturePhenomenaPlugin” is responsible for creating Future

or Predictive Phenomena. These Phenomena are used to predict Events and Incidents that may

occur in the future. This plugin does not subscribe to any messages, but instead utilizes timers to

perform its work. By default, this plugin runs every 10 minutes.

When the plugin runs, it loads any active Periodic Phenomena found in the database. If Periodic

Phenomena are found, this plugin extrapolates possible Events and Incidents by first examining

the timestamps of previous periods and then extrapolating into the future using the mean period

and the standard deviation. For each timestamp in the periodic phenomena, the mean period is

added. If the resulting timestamp is in the future, a Future Phenomena is created using the time

range of the future timestamp ± standard deviation of the Periodic Phenomena.

When a Future Phenomena is created, a timers are started in a separate thread signifying the

start and end timestamps of the Future Phenomena. When the first timer runs, messages are sent

to the BoxOptimizationPlugin and the ThresholdOptimizationPlugin instructing Event thresholds

to be set lower and Box Measurement rates to be set higher. This increases the chance of seeing

an Event over the predicted time window. When the second timer runs, these values are reset to

their default values. Thus, the plugin increases fidelity and decreases thresholds over the period of

a Future Phenomena.

This plugin also tracks the number of Events and Incidents that were identified utilizing Future

Phenomena. If a Future Phenomena does not detect any Events or Incidents, I say that the

Phenomena is not realized. If it does detect Events or Incidents, I say that the plugin is realized.

ITICPlugin. The “ITICPlugin” analyzes Vrms to determine where it falls within the ITIC

curve[66]. The ITIC curve is a power acceptability curve that plots time on the x-axis and Vrms

51

on the y-axis. The ITIC curve is displayed in Figure 3.8.

The purpose of the curve is to provide a tolerance envelope for single-phase 120V equipment.

Meaning it defines the sustained voltage tolerance at different time durations. The curve defines

three regions. The first region is “No Interruption” and generally includes all voltages with very

short sustained durations. All power Events within this region have no noticeable effect on power

equipment. The second region, the “No Damage Region”, occurs during voltage sags for extended

periods of time. Power Events in this region may cause equipment interruptions, but it will not

damage the equipment. The final region, the“Prohibited Region”, is caused by sustained voltage

swells and may cause damage to power equipment.

The ITICPlugin subscribes to the “RmsWindowedVoltage” topic. When it receives a message,

it extracts the windowed voltage features and uses a segmentation algorithm to split the features

into segments of sustained voltage. The segmentation algorithm is rather naive and described

below.

Given an array of values A, the length of the array len(A), and a segmentation threshold t:

1. Find all i where Ai −Ai−1 > t

2. Segments over A, (SA), are then defined as [SA0..i0 , SAi0..i1 , . . . , SAin..len(A)]

Once the segments are defined, we calculate the duration of each segment. We know that each

sample in the Vrms features represents one electrical cycle at 60Hz. Thus, to find the duration

of a segment in milliseconds we can simply divide the number of cycles by the number of cycles

in milliseconds. Thus, duration ms = cycles
0.06 . The plugin also calculates the mean Vrms for each

segment. Once we have a duration and mean Vrms for each segment, we can plot it on the ITIC

curve and get a region classification.

In order to plot the value on the curve, the curve is first constructed as a set of polygons

representing each ITIC region. Each polygon is represented by an array of points (see Appendix B).

Once the polygons are constructed, matplotlib’s point-in-polygon algorithm is used to determine

which ITIC region a point of (duration ms, Vrms) falls within. If a region of “No Interruption” or

“Prohibited” is returned, then a new ITIC Incident is created and stored to the database.

If a new Incident is created, a message is sent to the LahaGcPlugin informing the plugin to

update the TTL of all Measurements, Trends, and Events that belong to the Incident.

LahaGcPlugin. Mauka provides custom garbage collection (GC) for identifying and removing

“uninteresting” data. This fulfills one of Laha’s claims that it is able to manage data storage

pressure while increasing the signal-to-noise ratio within the data set.

In order for Mauka to know when items should be GCed, all elements stored in the database are

assigned a TTL. A default TTL is assigned when the element is first created, but can be updated

later by Mauka plugins depending on if that data is deemed “interesting”.

52

Figure 3.8: ITIC Curve

53

Data within Laha is continually refined with context and by importance in Laha and by exten-

sion, OPQ does the same. As data is deemed interesting by Mauka, it is moved upward through

the Laha hierarchy by Laha Actors. In the case of Mauka, this means moving raw data and fea-

tures from OPQ Boxes into Mauka. When Mauka identifies interesting features of this data, it is

moved into Events. Interesting enough Events are moved into Incidents, and collections of Incidents

are moved into Phenomena. Whenever data is moved upwards, that data receives the TTL of its

parent, and thus, will live for as long as its parent does.

Originally, Mauka relied on MongoDB’s Time-to-Live (TTL) semantics for expiring and delet-

ing uninteresting data. This did not provide the flexibility needed for Mauka’s refined garbage

collection needs. For example, MongoDB’s TTL could only be applied to entire collections and

not dynamically to individual elements in the collection. MongoDB’s TTL was also difficult to

update dynamically based on the state of the system. Because we want to assign TTLs dynami-

cally (as interesting data is moved upwards) we required a more robust solution to TTL and GC

management.

Default TTLs are dynamically stored in the Mongo database under the “laha config” collection

and the “ttls” key. Since the TTLs are stored in the database, they can be updated and tuned by

Mauka’s Phenomena.

Table 3.36 displays the default TTL in seconds for each OPQ collection.

Collection Default TTL seconds

box samples 900

Measurements 86400

Trends 1209600

Events 2620800

Incidents 31449600

Phenomena 62899200

Table 3.36: Default TTLs for OPQ Collections

As each item is saved to the database, it is assigned with a default TTL as described in Ta-

ble 3.36. If the item that was assigned to the database is later deemed important by Mauka and is

referenced by a parent item, it receives the TTL of the parent item allowing that data to live as long

as the parent does. If the parent item is a Phenomena, then all data relating to that Phenomena

(from all levels are the hierarchy) will live forever. The process of updating

The Mauka plugin “LahaGcPlugin” is responsible for GC and TTL management. Each plugin

in Mauka produces a heartbeat at a predefined interval. GC within the LahaGcPlugin takes place

every time the plugin produces a heartbeat.

Other than heartbeats, it is also possible to trigger the GC by sending a message to the GC

54

plugin with a list of collections that should be GC.

When the LahaGcPlugin receives a “GcTrigger” message, it extracts from the message the list

of collections that should be GCed. Heartbeats will trigger all collections to be GCed.

The Measurements and Trends collections perform GC by simply removing from the database

all Measurements and Trends that have a TTL that is older than the current date and time.

Events in OPQ are spread out over three collections: Events, box events, and gridfs files. Events

contain metadata about an Event which includes information about all Boxes that sent data in

response to that Event. Each Box that sent data for an Event will spawn a box event document

which includes information relating to a Box for a specific Event. Further, each box event document

points to where the raw data is stored in MongoDB using the gridfs data layer provided by the

database.

In order to GC Events, first all Events with a TTL less than the current date and time are

identified. From the Events, we look up the corresponding box events. From each box event, we

look up corresponding raw data in gridfs. First the gridfs data is removed, then the box events are

removed, and finally the Events themselves are removed.

To GC Incidents, a similar algorithm is provided. First, Incidents with a TTL less than the

current date and time are identified. From these identified Incidents, Mauka looks up and removes

the corresponding data in gridfs. Finally, the Incidents are removed.

Phenomena, being the top of the hierarchy are GCed the least since it provides the most context

for optimizing the DSN. Phenomena are only GCed when they are shown to be incorrect or are

otherwise unused over the period of a year. Thus, Phenomena take the same default TTL as

Incidents. Phenomena differ from Incidents in that every time a Phenomena is referenced by the

DSN, it is TTL is renewed for another year from the last use date. Similarly to other collections,

when a Phenomena’s TTL is updated, all collections that the Phenomena references will also have

their TTL updated.

Metrics for GC (i.e. the number of items removed per collection) are stored providing insights

to data management and effectiveness.

The Mauka GC plugin does not manage raw data on OPQ Boxes. Instead, OPQ Boxes manage

their own internal data buffer with a TTL that can be configured on the Box.

Dynamically updating TTLs is also performed by the LahaGcPlugin. The LahaGcPlugin listens

for specific “Ttl” messages that contain the source item that the TTL is being updated for. Then

all child elements of the source element also have their TTLs updated. TTLs are updated in the

following manner.

When new Events are created, the TTL of Measurements and Trends that coincide with that

Event receive the TTL of the Event. When Incidents are created, the Events, Trends, and Mea-

surements associated with that Incident receive the TTL of the Incident. When Phenomena are

created, the TTLs of Incidents, Events, Trends, and Measurements are assigned the TTL of the

55

Phenomena (which is infinite).

MockPlugin. The “MockPlugin” is a special plugin that can be instantiated at run time and

sends and receives messages to configurable topics. This plugin is useful for debugging and rerunning

(or running new) analysis over old data. As an example, let us say a new plugin Foo is designed.

We want to run historical data through Foo. To do that, the MockPlugin can be configured to read

the database for all old Events, and then construct a message to Foo so that Foo runs its analysis

over those Events.

OutagePlugin. The “OutagePlugin” classifies power outages. Since no real power data is pro-

duced during an outage, this plugin only subscribes to its own heartbeats. When a heartbeat is

received, the outage plugin looks up in the database all OPQ Boxes that are marked “down” by

OPQ Health and not marked as “unplugged” in the database. This plugin keeps track of current

outages so that if an OPQ Box is already in an outage state a new outage Incident is not created

on each subsequent heartbeat.

When outage Incidents are created, TTL update messages are not sent because there is no data

during the time period of an outage to adjust the TTL for.

PeriodicityPlugin. The “Periodicity Plugin” is responsible for detecting periodic signals in

power data. This plugin does not subscribe to any messages, but instead runs off of a config-

urable timer. The plugin is set to run by default once an hour and every hour it scrapes the last

24 hours worth of data and attempts to find periods in the Measurements over that duration.

For each feature in the Measurement and Trend data (e.g. frequency, voltage, and THD),

the Periodicity plugin first removes the DC offset from the data by subtracting the mean. Next,

the plugin filters the signal using a 4th order high-pass filter to filter out noise. The plugin then

performs autocorrelation on the signal followed by finding the peaks of the autocorrelation. The

mean distance between the peaks of the autocorrelation (µ) provides the period of the signal.

The plugin only classifies data as periodic if at least 3 peaks were found and the standard

deviation of the period (σ) is less than 600 seconds (10 minutes). Once a positive identification

has been made, peak detection is performed on the original signal using the µ and σ parameters

found from autocorrelation to parameterize the peak detection algorithm. The peaks of the original

signal represent the times and deviations from nominal for that feature.

Once the plugin has the timestamps and deviations from nominal of the periodic signal of

interest, the plugin can group Measurements, Trends, Events, and Incidents that were created

during the periodic signals together as part of the Periodic Phenomena.

As an example, Figure 3.9 shows periodic voltage sags observed at Box 1021.

The top panel shows the original signal. The middle panel shows the filtered signal. The bottom

panel shows the results of autocorrelation. In this example, we can see how the filtered data was

56

Figure 3.9: Periodic Phenomena Example

autocorrelated and then peak detection was performed on the autocorrelated signal to find the

mean period in seconds (µ = 2045.2 seconds) and the standard deviation in seconds (σ = 204.5

seconds). This is shown in the third panel. The periodicity metrics are then used to find all peaks

in the original data that are at least mu - sigma seconds apart. These peaks are shown in the first

panel.

The Periodicity Plugin also performs several pieces of housekeeping. It is possible that a Periodic

Phenomena already exists in the database for the same sensor and feature set. If that is the case, the

original Periodic Phenomena is updated if the newly identified period contains more autocorrelation

peaks and a smaller standard deviation than the one that is already stored. In the Event that the

plugin stops seeing periodic data for Phenomena that already exists, the plugin sets the Phenomena

as “no longer active” signaling that the Periodic Phenomena is no longer observing the periodic

signal of interest. The plugin also identifies Events and Incidents that have taken place during the

reported periodic signals.

SimilarityPlugin. The “SimilarityPlugin” attempts to find groupings of Incidents that are sim-

ilar. This plugin uses a similarity distance metric computed from the normalized duration of the

Incident and the normalized deviation from nominal of the Incident.

This plugin runs on a configurable timer (default of 24 hours). It loads all Incidents and groups

them by Incident type. K-means clustering is utilized to find groupings of related Incidents, with

57

empirically found k values for each Incident type. For example, k = 8 for frequency Incidents

provides decent characterization of Incidents by both duration and deviation from nominal.

When clusters are found, they are saved to the database as Similarity Phenomena. Each

similarity Phenomena maintains metadata about the Incidents contained within the Phenomena as

well as metadata describing the mean deviation from nominal and mean duration.

Optionally, this plugin can be configured to act on Incidents as they arrive. Using an initial set

of clusters found, the newly arrived Incident can be inserted into the correct cluster. Parameters

describing “non-interesting” cluster (e.g. less than 1 second and closer to nominal for frequency

Incident) can be provided to this plugin. If a new Incident is classified into a non-interesting cluster,

the Phenomena is updated to include this Incident, but the Incident is not saved to disk, providing

data savings and reducing the total number of Incidents so that only more interesting Incidents

remain.

PrintPlugin. The “PrintPlugin” is a special plugin that is mainly used for debugging. It sub-

scribes to all topics and simply prints the contents of the message to STDOUT. This is useful

in development or when bringing up a new Mauka system to ensure that the communications

infrastructure is in place. It can also be enabled at runtime from the Mauka CLI to debug all

communication channels for all plugins.

SemiF47Plugin. The “SemiF47” plugin is another plugin like the IticPlugin that plots voltage

and duration against a power acceptability curve. In this case, the standard used is the SemiF47

standard[15]. Rather than using a point-in-polygon approach, this plugin reads the VRMS features

sequentially and uses a state machine to keep track of the current classification. This plugin only

classifies values as a “violation” or as “nominal”.

The SemiF47 curve is displayed in Figure 3.10.

SemiF47 is described in Table 3.11.

StatusPlugin. Mauka provides a health endpoint that can be queried by OPQ Health to deter-

mine the health status of Mauka. The health status is saved to a database by Health and shown

in OPQ View.

The Mauka plugin “StatusPlugin” is responsible for obtaining and providing the status of the

OPQ Mauka service. The plugin subscribes to heartbeats sent at configurable intervals from all

other plugins including itself. When the plugin receives a heartbeat, it updates its internal state

which includes a mapping of all plugins, their state, and the last time that plugin sent a heartbeat.

The plugin provides a configurable HTTP endpoint which is queried by OPQ Health. The plugin

extracts the internal health state and serializes the state as JSON using the protocol described in

Table 3.37. This protocol is standardized for health collection across all OPQ services.

58

Figure 3.10: SemiF47 Curve

Figure 3.11: SemiF47 Table

59

Field Type Description

name string Name of the service

ok bool Whether the entire service is ok or not

timestamp int The timestamp of when the health request was received

subcomponents [HealthProtocol] Health protocol for each plugin

Table 3.37: Mauka HealthProtocol

SystemStatsPlugin. Mauka collects and stores many different types of performance metrics in

order to demonstrate the efficacy of Laha as implemented in Mauka. The metrics are collected by

the “SystemStatsPlugin” Mauka plugin and are stored in the MongoDB collection ‘laha metrics‘.

The metrics are conditioned and displayed in OPQ View for easy analysis. It is possible to select

a start and end date/time to configure the time window of metrics displayed in view. Examples of

Mauka’s metrics displayed in OPQ View are shown in Figure 3.12, Figure 3.13, and Figure 3.14.

The types of metrics collected include plugin statistics, system statistics, and Laha statistics

which provide metrics on data usage and TTL for data stored within each Laha level as well as

garbage collection statistics for each level of the hierarchy.

Metrics are collected at a configurable interval. System statistics such as CPU usage, memory

usage, and disk usage are sampled once every 10 seconds. Once every 5 minutes, all metrics are

saved to disk. The system statistic metrics which are sampled more frequently are rolled into a 5

minute metric only storing min, max, mean, variance, count, and start and end timestamp.

Mauka metrics consist of nested documents. The following Table describes each of the docu-

ments stored in the metrics collection.

The base document shown in Table 3.38 contains links to all of the high level metrics that Mauka

collects. This includes metrics for plugins, system statistics, Laha metrics, and ground truth.

Metric Type Description

plugin stats [PluginStat] List of metrics for each plugin.

system stats [SystemStat] System statistics for CPU, memory, and disk usage.

laha stats [LahaStat] Statistics on count, size, and TTL for each collection.

ground truth count int Count of ground truth documents.

ground truth size bytes int Size of ground truth in bytes.

Table 3.38: Mauka Metrics

Plugin metrics are described in Table 3.39 and mainly records the plugin name and the number

and size of messages received and produced for each plugin.

60

Figure 3.12: OPQ Mauka Metrics I

61

Figure 3.13: OPQ Mauka Metrics II

62

Figure 3.14: OPQ Mauka Metrics III

63

Metric Type Description

messages received int The number of messages the plugin has received.

messages published int The number of messages the plugin has published.

bytes received int The number of bytes the plugin has received.

bytes published int The number of bytes the plugin has published.

Table 3.39: PluginStat

System metrics as shown in Table 3.40 use descriptive statistics over a time window to collect

the minimum, maximum, mean, variance, and count of memory, disk, and CPU usage.

Metric Type Description

min float Minimum value over time window.

max float Maximum value over time window.

mean float Mean value over time window.

var float Variance of values over time window.

cnt int The number of items sampled over time window.

start timestamp s int Start timestamp of time window.

end timestamp s int End timestamp of time window.

Table 3.40: SystemStat

The Laha metrics described in Table 3.41 store metrics relating to the TTL, size, and count of

Laha collections.

Metric Type Description

ttl int Default TTL for a Laha level.

count int Number of items in a Laha level.

size bytes int Size of a Laha level in bytes.

Table 3.41: LahaStat

ThdPlugin. The “ThdPlugin” classifies abnormal amounts of total harmonic distortion (THD) in

a power waveform. THD is a measure of amount of noise in the frequency at multiples of 60Hz. The

ThdPlugin subscribes to messages from the “AdcSamples” topic which include payloads consisting

of raw samples from the OPQ Boxes. THD is calculated using a rolling window of one electrical

64

cycle over the waveform. For each window, THD is calculated by Equation 3.2.

THDF =

√
V 2
2 + V 2

3 + V 2
4 + . . .

V1
(3.2)

For each continuous set of windows that has THD higher than the configured threshold, a

THD Incident is created. If an Incident is created, this plugin sends a GC UPDATE message to

the LahaGcPlugin informing it that it should update all Measurements, Trends, and Events that

belong to the new Incident to match the Incident’s TTL.

TransientPlugin. The “TransientPlugin” is responsible for classifying frequency transients in

power waveforms. The plugin subscribes to messages from the “RawVoltage” topic which contains a

calibrated power waveform payload. The TransientPlugin is capable of classifying impulsive, arcing,

oscillatory, and periodic notching transients. A decision tree is utilized to select the most likely

transient type and then further analysis is used to perform the actual classification of transients.

Dickens et al[14] provides more details on the transient classification system.

When a transient is classified a new transient Incident is created. If an Incident is created, this

plugin sends a GC UPDATE message to the LahaGcPlugin informing it to update the TTLs for

all Measurements, Trends, and Events that belong to this new Incident.

TriggerPlugin. The “TriggerPlugin” provides Mauka with the functionality to trigger OPQ

Boxes itself instead of relying on Makai for triggering. Generally, Mauka is only provided with

event ids when Makai triggers Boxes based off of their low-fidelity data streams. Mauka then loads

the associated Event data from the database, performs cycle level feature extraction, and then

forwards those features to analysis plugins for PQ analysis.

This plugin takes advantage of Phenomena in order to find Incidents that may not have passed

Makai’s triggering thresholds.

This plugin consists of two threads running in a single process. The main thread (or the plugin

thread) is responsible for listening for “TriggerRequest” messages from other plugins and sending

trigger requests to Makai’s acquisition broker. The second data thread is responsible for listening

for data from triggered Boxes routed through Makai.

The only stateful component between a data request and a data response is an identity string

which is a specially crafted string that allows Makai to route requests through its services. The

format of an identity string is “[topic] [event token] [uuid]”. In Mauka’s case, the “[topic]” is always

set to “mauka”, the “[event token]” is a randomly generated v4 UUID (which provides 2122 bits

of collision space), and the “[uuid]” is the box id of the Box being triggered. The issue however

is that both threads need to know more than just the identity. For instance, they need to know

things like which “event id” and “incident id” a data response belongs to to or which Boxes we are

still waiting for a response from.

65

To accomplish data sharing between the two threads, a thread safe “TriggerRecords” class was

created. This class uses a reentrant lock to lock mappings from “event token” to all of “event id”,

“incident id”, “timestamp ms” (of record insert), and “triggered boxes”. Details of how these

mappings are used are provided below.

This plugin listens for “TriggerRequest” messages from other plugins. When it receives a

“TriggerRequest”, it constructs protobuf data commands that Makai can consume. Each data

command is for a single Box and includes start and end timestamps as milliseconds since the

epoch. Each data command also contains an identity string which determines how the message is

routed through Makai’s services.

The data commands described in Section 3.22 are serialized and sent over a ZMQ PUSH/PULL

socket to Makai’s acquisition broker. Makai’s acquisition broker then goes out to the requested

Boxes (if they are available) and requests raw data for the requested time window.

Previously, Makai handled all Event storage. With this plugin, Mauka now has to handle

Event storage for Boxes that Mauka has triggered. This includes creating and modifying the Event

document metadata, BoxEvent document metadata, and gridfs waveform storage.

Just after the data commands are sent to Makai’s acquisition broker, a ZMQ REQ/REP channel

is used to query Makai’s Event Id service. Makai’s Event Id service provides atomic access to the

next available Event Id for storage of Events in the Mongo database. Once the next available Event

Id is received by Mauka, it is used to create a new Event document in the database with the new

Event Id, the Event time window, and a list of triggered Boxes.

Just after the event id is received, the plugin updates the thread-safe TriggerMappings class

with mappings from the new event token to the new event id, the incident id, the Boxes triggered,

and the timestamp of the triggers.

In order to receive data requested from the Boxes, this plugin starts a separate data thread when

this plugin starts. The data thread connects to a Makai acquisition broker endpoint over ZMQ

using a PUB/SUB channel. The data thread subscribes to all topics that start with “mauka ”

which will match all identities generated by Mauka and will ignore trigger requests initiated by

Makai.

When data is received for a Box in the data thread, the metadata and uncalibrated waveform

cycles are extracted from the deserialized message. We also extract event id information from

the thread-safe TriggerRecords class using the response’s event token. A “BoxEvent” document is

created in the Mongo database for the newly received data and the waveform is written to gridfs

and metadata pointing to the gridfs file is provided in the BoxEvent.

Next, the original Event document is updated to insert the received box id into the “re-

ceived boxes” field.

Then, the received Box Id is removed from the TriggerRecords class since we are no longer

waiting on it. If this was the last Box we were waiting on for an associated event, then the trigger

66

record associated with this identity is removed and a message with the new event id is sent to the

“MakaiEventPlugin” which then forwards feature extracted data to the rest of the analysis pipeline.

By using the above approach, we ensure that we never request analysis of the data until all

triggered Boxes are received for a particular event. However, we can run into the issue of trig-

gered Boxes never returning data for a request. To deal with this issue, the TriggerRecords class

timestamps each record that is inserted. If the data receive thread does not receive data from

all triggered Boxes within a configurable amount of time (default 1 minute), then the records are

removed and an event id is sent to the “MakaiEventPlugin” so that it can process data for all of

the Boxes that it did receive.

Data triggered from Mauka is fundamentally different than data triggered from Makai. That is

because Boxes triggered from Mauka are always triggered from an associated Incident or Phenom-

ena. If new Incidents are found from this data and they are similar to the original Incident that

caused Mauka to trigger, then we have found a global event and possible Phenomena that would not

have been observed using Makai’s triggering alone. This requires extra semantic information to be

passed to the “MakaiEventPlugin” and other analysis plugins. Data received from Mauka triggers

are always forwarded with the associated Incident or Phenomena Id so that the relationships can

be tracked and maintained.

ThresholdOptimizationPlugin. The ThresholdOptimizationPlugin is responsible for modify-

ing dynamic triggering thresholds within Makai. Makai utilizes two methods for triggering Boxes.

One method called “Napali” was produced by Sergey Negrashov as part of his dissertation research.

The Napali trigger uses a windowed statistical model for triggering devices based off of metric dis-

tance from standard deviations and means. The second approach to triggering is a threshold trigger

which watches frequency, voltage, and THD levels to determine whether they have passed certain

thresholds. This plugin works with the second type of triggering, the threshold trigger. Threshold

based triggering is described in Section 3.4.2.

Thresholds are stored in MongoDB and consist of default thresholds and override thresholds

which are thresholds set specifically for individual devices. This plugin can dynamically modify

both types of thresholds. The data model for thresholds are presented in Table 3.33.

This plugin receives the MaukaMessage variant “ThresholdOptimizationRequest” (described in

Section 3.19). When a request is received, the default thresholds can be updated, a single override

threshold can be updated, or both can be updated at the same time.

For any default value in the request that is larger than 0, the default threshold value in the

database is updated with the new request value. If the request contains an override value larger

than 0, this plugin first checks to see an override for that Box already exists in the database. If an

override already exists, then the override is updated with the new override values from the request.

If the override does not exist, then a new override is created with default values and the override

values are updated from the request.

67

RateOptimizationPlugin. The “RateOptimizationPlugin” is responsible for modifying the send

rate of Measurements for specific Boxes. This plugin subscribes to “RateOptimizationRequest”

messages (described in Section 3.20) which include a Box Id and requested sample rate for the

Measurements collection.

Requests from this plugin are sent from Phenomena when a Phenomena believes that changing

the Measurement rate of a Box or Boxes could enhance Mauka’s ability to discover signals of

interest.

When a request is received, this plugin sends a Makai Command (Section 3.22) to Makai’s

acquisition broker over a ZMQ socket. The command message includes the Box Id and Measurement

sample rate. Makai then handles forwarding the command to the relevant Box which will then

change its Measurement rate to match that of the request.

TtlOptimizationPlugin. The “TtlOptimizationPlugin” is responsible for dynamically modi-

fying “laha config” collection TTL values. This plugin subscribes to “TtlOptimizationRequest”

messages (Section 3.21).

When a request is received, the corresponding TTL value in the database is updated to match

the requested value.

This plugin only affects TTL values for newly generated Measurements, Trends, Event, Inci-

dents, and Phenomena and will not update the TTL values of documents that are already in the

database.

Debugging OPQ Mauka

The Mauka system can be configured so that only specified plugins print debug messages. This is

accomplished by specifying the names of the plugins which should print debug output in Mauka’s

configuration file. Without this functionality, parsing through the entirety of Mauka’s log output

would be a daunting task.

3.4.4 OPQ: View

OPQ View is a web application that provides visualization, notification, and user management

services for data, sensors, and user accounts with the OPQ framework. OPQ View is built using

Meteor.js and provides a Reactive view of the underlying data stored in the OPQ database.

A screenshot of OPQ View in action is provided in Figure 3.15.

For the most part, OPQ View serves as a client for displaying PQ information collected and

analyzed by the rest of the framework. However, OPQ View provides two components that are

directly related to this dissertation.

OPQ View provides the ability to manually define minimum and maximum triggering thresholds

for voltage, frequency, and THD used by Makai. Figure 3.16 shows what this functionality looks

68

Figure 3.15: OPQ View Screenshot

69

Figure 3.16: OPQ View Threshold Configuration

like as implemented in View.

OPQ View also provides a display for Laha metrics that were collected by Mauka. This is

described and shown in Section 3.4.3.

3.4.5 OPQ: Dockerfication

The OPQ system is made up of many separate services and technology stacks. Each service has

its own build process and set of other services that it communicates with. In order to streamline

the building and deployment of OPQ services, we implemented a containerized architecture using

Docker and Docker Compose. This architecture allows us to track the version of each service and

provide the OPQ Cloud system as a monolithic service managed by Docker. This greatly simplifies

deployment of not just individual services, but deployment of the entire system as a whole.

Each OPQ service runs in its own Docker container. Each container is configured so that

network access is restricted to only the other containers that it is allowed to communicate with.

70

Figure 3.17: OPQ Docker Architecture

Docker also allows us to manage which ports are open to the outside world for any particular

service.

Docker also restricts access to the filesystem. These features combined help to provide a secure

environment for the execution of OPQ services.

The Docker architecture that OPQ uses is presented in Figure 3.17.

3.5 Lokahi: A Laha-compliant Infrasound DSN

Lokahi is a dynamic DSN that originally evolved as a distributed infrasound detection network.

Infrasound is characterized as sound waves that are less than 20 Hz. Infrasound generally can

not be deciphered by the human ear, but it can be detected using microphone and barometric

pressure sensors. Any large movements of the atmosphere can produce infrasound. The Lokahi

network was designed to supplement the International Monitoring System (IMS) for the capture of

undeclared and declared nuclear explosions. Lokahi has been successfully used to capture signals

from volcanoes, hurricanes, aircraft, meteors, and other large atmospheric events.

Sensors in Lokahi are any mobile device that can run iOS or Android. We have sensors dis-

tributed world wide. The software stack for Lokahi consists of a distributed actor system for data

acquisition, MongoDB for metadata persistence, Apache Kafka for data queues and interprocess

communication, Python and related scientific libraries for analysis, and a distributed key-value

store for long term storage or sensor data.

71

Recent development and improvements to the data API have allowed Lokahi to begin accepting

data from any of the available onboard sensors on iOS and Android devices. Even though the main

focus is still infrasound, having access to all of the available sensors provides the ability to sense

other sensor fields and to perform interesting data fusion techniques.

A diagram of the Lokahi framework is provided in Figure 3.18.

Lokahi is made up of several distributed services, each of which will be discussed in the following

sections.

3.5.1 Lokahi Data Acquisition Service

The data acquisition service is responsible for acquiring, authenticating, storing, and moving real-

time sensor data from Lokahi sensors.

The data acquisition service is written in Rust [57] and makes use of Actix Actors [1] for

scalability and distributed communication. Originally, the data acquisition server was written in

Java using Akka Actors [41]. I recently moved the acquisition server to Rust so that it can be run

on embedded hardware such as Raspberry Pis in resource restricted environments or on the edge of

networks. Rust also provides performances improvements in terms of CPU utilization and memory

utilization.

Type safe data is passed between actors where each actor fulfills a single purpose. When an

actor successfully completes a unit of work, it responds with an empty success message to the

calling actor. If an actor fails to complete a unit of work, it responds with a type safe error message

to the calling actor. Errors messages are passed up the chain until they get to the original caller.

All actors in this service are optional and configurable. For instance, this service can be brought

up with the sole purpose of writing the data to a file system and nothing else, or acting solely as a

data relay, or only storing data to AWS S3, or it can do it all.

Further, multiple Actors can be ran concurrently with different configurations. For instance,

it is possible to define multiple Kafka [36] actors, each with their own encryption and endpoint

configurations, or you could write data to multiple file systems by configuring multiple file system

Actors, etc.

It is also possible to configure each actor with whitelists and blacklists where items can be added

by sensor Id or sensor owner. In this way, the configuration for each actor can be fine tuned to only

allow certain sensors or sets of sensors or disallow sets of sensors. This is utilized when we require

that only a subset of data received be forwarded to a particular actor. For instance, when we share

real time data with our collaborators, they are only interested in a certain subset of data that we

are receiving. Therefore, we create a whitelist with their information so that they only receive the

data they are interested in. On the other hand, that data may be sensitive, so we black list it on

other actors so that data is not forwarded to those actors.

Finally, configuration of all actors is performed declaratively in a type safe configuration file.

72

Figure 3.18: Lokahi Design

73

Figure 3.19: Lokahi Acquisition Architecture where OCSP=“original compressed serialized
packet”, UP=“updated packet”, UCSP=“updated compressed serialized packet”, M=“metadata”,
AR=“actor response”, DR=“device response”.

Figure 3.19 provides an overview of the workflow and communication between Actors with the

acquisition service.

Acquisition Service Configuration

Configuration for this service is stored in a .toml file. This file is parsed from the environment

on service startup and deserialized into a typesafe Rust struct. The configuration is completely

declarative and all actor configurations are optional. Also, it is possible to add new actors to

this system by simply declaring a new actor in the configuration and restarting the service. This

approach scales much more nicely than our previous approach which required editing the source

code directly to modify or add actors.

An example configuration file with one of each actor type is provided in the appendix in Sec-

tion D.

Acquisition Actor

Lokahi sensors establish an encrypted WebSocket connection to the the acquisition server in which

they send data over. Encryption is provided over standard HTTPS using “Let’s Encrypt” as a

certificate provider. Once the connection is established, the connection remains open for as long

as the sensor is continuously sending data. Each connection causes the creation of a new Actix

Actor within the acquisition service. Instead of creating a thread for each connection, actors share

their resources over a configurable thread pool and lightweight green threads are used to provide

concurrency. Since most of the work of the acquisition service is I/O bound, the system employs

74

green threads.

This actor is also responsible for checking the response messages from all actors in the acquisition

pipeline. If all responses are “Ok”, then this actor responds to the sensor with a checksum and an

“Ok” response. If any of the actor responses are an error, then this actor responds to the sensor

with an error message and the sensor will store the data onboard until it is able to send at a later

time.

Packet Actor

The acquisition service “Packet Actor” handles each packet from a sensor individually. When a

packet arrives, the packet is first decompressed using a custom LZ4 compression protocol where

the first four bytes of the compressed payload contain the size of the original uncompressed data.

Once the packet is decompressed, it is then deserialized using Protocol Buffers into a struct

that Rust is able to work with. The data packet protocol is provided in full in the appendix in

Section C.

Each packet contains a Json Web Token (JWT) which is a cryptographically signed token gen-

erated by Lokahi Web. This token provides user authentication and authorization. The acquisition

service extracts the token and either accepts or rejects the packet depending on if authentication

is successful or not.

The acquisition service “Packet Actor” performs several small updates to the packet when it

arrives. First, it adds a server receive timestamp which marks the time that the packet was received

at the server. This, along with the packet sensor time stamps allows us to keep a running record

of latency values from sensors to acquisition service. Next, the authentication token and Firebase

token are redacted since their values are only used within the acquisition service. This prevents

others from accessing this data and masquerading as someone else. Finally, the packet is marked as

either “real-time” or “backfilled” depending using a heuristic that compares the packet timestamps

to the server timestamps. Real-time data is data that is recorded and immediately transferred over

the network whereas backfilled data is recorded and sent over the network at a later time. Finally,

the packet is updated with a data key which is the key that will eventually be used to store the

data packet in AWS S3, a distributed key-value store.

Mongo Actor

Once the packet has been updated by the “Packet Actor”, all meta-data is extracted and stored

in MongoDB by a “Mongo Actor”. Everything from the original packet is stored except for the

data payloads themselves. However, the descriptive statistics of the payloads are stored so that the

database contains some metadata about what the payload contains.

Multiple collections are updated by the Mongo Actor when a packet is received.

75

The “RedvoxPacketApi900” collection stores metadata for all data packets received from sen-

sors. The schema for this collection is described in Table 3.42. This document also includes two

embedded documents EvenlySampledChannel (Section 3.43) and UnevenlySampledChannel (Sec-

tion 3.44). The EvenlySampledChannel document contains metadata for evenly sampled channels

such as the microphone. The UnevenlySampledChannel document contains metadata for unevenly

sampled channels such as barometer, location, gyroscope, accelerometer, etc.

Field Value Description

channelTypes [str] A list of sub-channels included in this channel.

sensorName str The name of sensor.

sampleRateHz f64 The sample rate of this sensor.

firstSampleTimestampUs i64 Timestamp of the first sample.

payloadCase str An enum string for the data type stored in the payload.

payloadCount i32 The number of items in the payload in the original data.

valueMeans [f64] List of mean values of the payload for each sub-channel.

valueStds [f64] List of the stddev of the values of the payload for each sub-

channel.

valueMedians [f64] List of medians of the values of the payload for each sub-

channel.

metadata [str] List of metadata added to this channel.

Table 3.43: RedvoxPacketApi900.EvenlySampledChannel

76

Field Value Description

id bson.ObjectId The object Id associated with the document.
className str The class name used for Java serialization and

deserialization.
api int32 The API version of this data (should be 900).
redvoxId str The Id of the sensor.
redvoxUuid str The uuid of the sensor.
authenticatedEmail str The user account associated with this device.
authenticationToken str The JWT that was used for authenticating this

packet.
firebaseToken str The firebase token associated with this device.
isBackfilled bool True if this packet was backfilled, False other-

wise.
isPrivate bool True if this packet is marked as private, False

otherwise.
isScrambled bool True if this packet has voice data scrambled,

False otherwise.
deviceMake str The make of the sensor.
deviceModel str The model of the sensor.
deviceOs str The OS of the sensor (either iOS or Android).
deviceOsVersion str The OS version.
appVersion str The sensor app version.
batteryLevelPercent f32 The sensor’s battery level.
deviceTemperatureC f32 The sensor’s temperature in C.
acquisitionServer str The server that this data was sent to.
timeSynchronizationServer str The server this sensor used for synch.
authenticationServer str The server this sensor used to authenticated

with.
appFileStartUsUtc i64 The timestamp of the start of this packet.
appFileStartMachine i64 The machine timestamp of the start of this

packet.
serverTimestampUsUtc i64 The time that this packet was received at the

server.
evenlySampledChannels [EvenChannel] Evenly sampled channels metadata.
unevenlySampledChannels [UnevenChannel] Unevenly sampled channels metadata.
metadata [str] A list of metadata added to this packet.
dataKey str The location of the original data file stored in

AWS S3.

Table 3.42: RedvoxPacketApi900

77

Field Value Description

channelTypes [str] A list of sub-channels included in this channel.

sensorName str The name of sensor.

timestampsCount i32 The number of timestamps for this channel in the original data.

payloadCase str An enum string for the data type stored in the payload.

payloadCount i32 The number of items in the payload in the original data.

valueMeans [f64] List of mean values of the payload for each sub-channel.

valueStds [f64] List of the stddev of the values of the payload for each sub-

channel.

valueMedians [f64] List of medians of the values of the payload for each sub-

channel.

sampleIntervalMean f64 The mean sample interval of each sample.

sampleIntervalStd f64 The mean sample stddev of each sample.

sampleIntervalMedian f64 The median sample interval of each sample.

metadata [str] List of metadata added to this channel.

Table 3.44: RedvoxPacketApi900.UnevenlySampledChannel

The Mongo Actor also updates other documents which are used by Lokahi View for display,

device, and user management. The schemas for these collections are described next.

The “RedvoxDeviceApi900” collection contains metadata relating to each sensor that Lokahi

receives from. This collection is described in Table 3.45. This collection also contains two embedded

documents “PrivacyPolicy” (Section 3.46) and “AuthenticatedEmailEntry” (Section 3.47).

78

Field Value Description

id bson.ObjectId The object Id of this document.

className str Used for Java ORM interop.

redvoxId str The Id associated with this device.

uuid str The uuid associated with this device.

lastUpdatedTimestamp i64 The timestamp of the last time this

device received data.

lastPacket DBRef A reference to the last received

packet.

lastLocationPoint mongo.Point The last location this device was re-

ceived from.

currentPolicyType str The devices policy type (public/pri-

vate).

privacyPolicies [PrivacyPolicy] A list of privacy policies this device

has used.

currentAuthenticatedEmail str This devices current user.

authenticatedEmailEntries [AuthenticatedEmailEntry] A list of all users who have used this

device.

valid bool A field that marks this device as

valid or invalid.

receivers [str] A list of users who can access data

from this device.

Table 3.45: RedvoxDeviceApi900

Field Value Description

policyType str A string representing the policy type

(public/private).

startTimestampMillisecondsSinceEpochUtc i64 Start time of this policy.

Table 3.46: PrivacyPolicy

79

Field Value Description

authenticatedEmail str The email associated with this account at

this time.

startTimestampMillisecondsSinceEpochUtc i64 Start time of this email entry.

Table 3.47: AuthenticatedEmailEntry

The “HistoricalDevice” collection is used to store metadata about the last data that was received

for each sensor. This is used in Lokahi View for displaying the location of every sensor ever received.

The HistoricalDevice collection is described in Table 3.48.

Field Value Description

deviceId i64 The sensor Id.

uuid i64 The sensor uuid.

lastActive Date The last time this device was active.

lastLocation mongodb.Point The last location this device was received from.

os str The OS of this device as of its last sent packet.

Table 3.48: HistoricalDevice

The “DailyDataUsage” collection is a collection that stores metadata relating to how much data

is used daily per user of the Lokahi service. The “DailyDataUsage” document schema is provided

in Table 3.49.

Field Type Description

id bson.ObjectId The object Id of this document.

user str The user account associated with this document.

year int32 The year of this document.

month int32 The month of this document.

day int32 The day of this document.

bytesContributed int64 The number of bytes contributed by this user.

bytesConsumed int64 The number of bytes consumed by this user.

Table 3.49: DailyDataUsage

S3 Actor

After the metadata has been stored, the updated packet is serialized back into bytes and then

compressed using the same custom LZ4 compression protocol. This data is then sent to AWS S3

80

by the “S3 Actor” for permanent storage for later data retrieval. S3 is a cloud service offered by

Amazon which acts as a distributed key-value store with essentially unlimited space.

Data is stored to S3 using using the following directory layout:

api900/[YYYY]/[MM]/[DD]/[sensor id] [packet timestamp ms].rdvxz.

Fs Actor

The data can optionally be stored to any accessible file system using the “Fs Actor”. This is useful

in cases when your acquisition server may only have local network access, such as restricted sites

with an acquisition server running on a Raspberry Pi on a LAN.

Kafka Actor

The compressed data is next produced to several Apache Kafka [36] endpoints using the “Kafka

Actor”.

Apache Kafka provides a distributed messaging queue that can use publish/subscribe semantics.

Lokahi uses Kafka for inter-process distributed communication and for providing a real-time data

endpoint for our collaborators. Lokahi manages an internal Kafka queue that acts as a ring buffer

for storing an hours worth of real-time data for each device. This real-time ring buffer is used for

generating real time plots of data without needing to access the database or pull the data from

AWS S3.

Lokahi also provides secure real-time Kafka endpoints to our collaborators which include na-

tional labs, defense contractors, and private contracts. The acquisition service filters collaborator

packets based off of the JWT and encrypts the compressed serialized packet with the collaborator’s

GPG public key. Our collaborators then use an Apache NiFi service for collecting and decrypting

the data from the Kafka endpoint for their own internal use.

Each device is provided its own partition within Kafka to publish data to. Since each Kafka par-

tition creates a file on the file system, the number of Kafka partitions and the partitions themselves

must be managed intelligently. Partitions are assigned by the acquisition service. The acquisition

service looks up the next available partition in the database. Partitions become available if a sensor

stops using a partition for longer than an hour. Our current design provides up to 500 concurrent

partitions at once.

Relay Actor

The acquisition service can act as a relay to other acquisition services that speak the same protocol.

If this actor is enabled, any packets it receives are relayed to the configured acquisition server. This

is useful for load balancing and for timing accuracy. In load balancing, this server can be configured

to filter subsets of devices to other acquisition servers by configuring a relay actor for each server

81

that data is being forwarded to. For timing accuracy, this service can be deployed on a Raspberry

Pi at the edge of a network near the sensors, reducing the latency between sensor and server.

Then, when a packet arrives at the server, it is updated with a low latency server timestamp which

improves timing accuracy. The low powered Raspberry Pi can then relay the packet to the cloud

where it will be handled, but already have the improved timing accuracy built into the packet.

3.5.2 Lokahi Time Synchronization

Much of Lokahi’s sensor analysis requires that sensors be synchronized in time. In order to calculate

direction and distance to a signal source, sensors should have clocks that are synchronized within

milliseconds of each other. We initially tried to use NTP, but it did not provide the timing accuracy

we desired, and thus, implemented a custom time synchronization protocol.

The protocol used in Lokahi is an implementation described by Tian et al in their Tri-Message

Exchange paper[67]. This algorithm was developed specifically for providing accurate time syn-

chronization in high latency networks.

This service is written in Rust and utilizes encrypted x for communication with sensors. While a

sensor is recording data, a separate thread on that sensor continuously performs message exchanges

with this service. The best exchange out of a group of exchanges (the one with the lowest latency)

is then used to correct timing for packets.

A description of the algorithm is provided below. This algorithm expects that the client will

build up a successive message exchange consisting of the elements B0, B1, B2, B3, A1, A2, A3, but

only up two a maximum of two timestamps are ever exchanged at one time. These coefficients are

then stored in each data packet so that the server can use them to correct for timing.

1. Client connects to redvox-synch-server over WebSocket connection

2. Client records and stores B0 immediately before sending message

3. Client sends binary message to server where the payload is a single byte 0x00

4. Server responds asynchronously, goto 5

5. onMessage fires for client

(a) Client records Btmp

(b) Client decodes payload (see protocol below)

(c) If sequence number is 0, then

i. Client extracts and stores A1 from server receive timestamp

ii. Client stores B1 = Btmp

iii. Client records and stores B2 immediately before sending message

82

iv. Client sends binary message to server where payload is a single byte 0x01

v. Server responds asynchronously, goto 5

(d) If sequence number is 1, then

i. Client extracts and stores A2 from server receive timestamp

ii. Client extracts and stores A3 from server send timestamp

iii. Client stores B3 = Btmp

iv. Client can close the connection or reuse the same connection to perform another

message exchange starting from 2

The protocol used for communicating message exchanges is a simple binary protocol designed

to reduce bandwidth. The protocol is described in detail in Table 3.50.

Byte Offset Description

0 1 Sequence Number (0 or 1)

1 8 Int timestamp A µ sec

9 8 Int timestamp B µ sec

Table 3.50: Time Synchronization Binary Protocol

3.5.3 Lokahi Health

System health is provided by three open source components Prometheus, Grafana, and node exporter.

Prometheus is a time series database for metric collection and Grafana is a visualization solution for

time series databases. “node exporter” is installed on each system for collecting system statistics

and sending them to a Prometheus endpoint. With these three systems, we are able to provide

coverage for all performance metrics required by Lokahi.

Up/Down Metrics

node exporter, other than collecting system statistics, provides a simple metric for whether or not

a system or service is up or down. This provides a base line of performance metrics. When a

system goes down, an e-mail alert is sent to all interested parties. An example of our Up/Down

interface is provided in Figure 3.20 which shows which services are currently working and which

services require maintenance.

It is also possible to display a historic view up Up/Down metrics as shown in Figure 3.21. When

services are up, they display a value of “1” and when services are down, the plot drops below “1”

indicating that the service was down for a certain amount of time.

83

Figure 3.20: System and Service Status

Figure 3.21: System and Service Status History Past Day

84

Figure 3.22: System Metrics

System Metrics

“node exporter” provides Prometheus with a large selection of system metrics. We collect these

metrics for each virtual server that we are running. We collect metrics on file system usage, memory

usage, CPU usage, and network usage. An example of this from one of our services is displayed in

Figure 3.22.

Sensor Metrics

Lokahi also collects metrics from devices grouped by device and also grouped by device owner. We

collect metrics on number of packets received and number of bytes received. We also collection

metrics on sensor metadata such as device make/model, operating system, and app version. Due

to the sensitive nature of this data, I will not provide a screenshot of these metrics. However, they

are line graphs similar the system metrics.

3.5.4 Lokahi Analysis

Analysis of sensor data is provided by a custom Python framework. This framework utilizes an

Apache Kafka client to subscribe to data request topics and real-time data topics.

When a request for analysis is received, the analysis framework will create a new process pool

85

to run all of the analysis. Once the analysis is completed, the process pool is destroyed freeing

up memory leaks caused by matplotlib. Requests for analysis include a time window, the devices

that should be included for analysis, and the types of analysis that should be performed for those

devices.

If the request is for real-time data, then the process will acquire the data from the Kafka real-

time ring buffer data queue. If the request is for historic data, then the associated data will be

looked up in the MongoDB database, and then the data payloads will be retrieved from AWS S3.

When the analysis is completed, metadata data about the analysis is stored to MongoDB, any

figures generated by analysis are stored to AWS S3, and a response is sent back to Lokahi Web

with the results of the analysis.

Lokahi Analysis is capable of creating the following products from sensor data:

• Linear Microphone Waveform and Fast Fourier Transform (FFT)

• Log Microphone Waveform and FFT

• Multiresolution Microphone

• Barometer FFT

• Multiresolution Barometer

• Latency statistical line plot

• Location (latitude, longitude, altitude, speed) statistical line plot

• Magnetometer Waveform and FFT

• Gyroscope Waveform and FFT

• Accelerometer Waveform and FFT

• Light Waveform and FFT

In the above list, “FFT” stands for Fast Fourier Transform which converts a signal from the

time domain into the frequency domain for frequency analysis.

Figures are generating using Python’s matplotlib library. Most of the sensor analysis was

implemented by colleagues at the Infrasound Laboratory in Kailua-Kona. I merely provided the

infrastructure that allows them to run their geophysical analysis.

The analysis framework is not only capable of producing new reports and products, but can

also be used to update existing reports and products.

An overview of the analysis architecture is provided in Figure 3.23.

86

Figure 3.23: Lokahi Analysis Architecture

3.5.5 Lokahi Web

Lokahi Web is a web interface that allows users to check the status of their sensors, download

sensor data, and generate analysis reports. It also allows administrators to view sensor data usage,

send alerts to sensors, and manage users. Lokahi Web is written in Java and powered by the Play

Framework. Most functionality in Lokahi Web is provided from metadata stored in the MongoDB

and by passing messages band and forth to the analysis service over a Kafka queue.

Sensor Status

The main page of Lokahi Web displays a map of currently active sensors (that the logged in user can

access) and displays a list of those sensors sorted by distance from the users current location. This

data is obtained by loading metadata from the database. An example if this interface is displayed

in Figure 3.24.

The “Active Devices” page lists all active devices that the logged in user can access as well

as some metadata about those sensors. This data is loaded as metadata from the database. An

example of this page is displayed in Figure 3.25.

It is possible to drill into the details of an individual device by clicking the “Details” link

on the “Active Devices” page. The detailed device status includes a map of the location of the

device, the device activity over the past hour and past day, metadata details, and real-time plots

for microphone, barometer, location, and time synchronization This data is loaded as metadata

from the database and also real-time sensor payload data is retrieved from the real-time Kafka ring

buffer. An example of detailed device status is provided in Figure 3.26.

87

Figure 3.24: Lokahi Web Main Page

Users are able to create groups of devices based on geo-location by defining a bounding box.

Then all sensors that are within that bounding box will appear in that user created group. This

allows users to view the status of multiple devices at one time for a specific geographic location.

This data is stored as metadata in the database. An example of the group creation interface is

displayed in Figure 3.27.

Once a group is created, you can then view the status of all devices in that group by going

to the group’s page. This page will display device activity for each device over the past hour and

provides a quick interface for generating an analysis report from that specific grouping of devices.

This data is a combination of metadata and real-time data from the Kafka buffer. An example of

this is displayed in Figure 3.28.

Data Explorer

The “Data Explorer” page provides a custom built interface that displays details of individual data

packets as they arrive. This is useful for debugging and ensuring that the sensors are sending what

the users expect the sensors to be sending.

This page displays information loaded from the database. If a sensor channel is selected, then

the payload is received from AWS S3 and displayed on this page using a custom JavaScript plotter.

This page also allows users to download individual data packets or export payloads as CSV.

An example of the data explorer is provided in Figure 3.29 and shows the waveform from a

selected microphone channel.

Data within the explorer can be filtered by device Id, device owner, time window, device make/-

model, os version, app version, microphone sampling rate, onboard sensors, and privacy status.

88

Figure 3.25: Active Devices

89

Figure 3.26: Detailed Device Status

90

Figure 3.27: Sensor Group Creation

Analysis Reports

The main component of Lokahi Web is its report generation functionality. This functionality allows

users to generate analysis reports from sensors that they can access with configurable time windows

and sensor feature selection. Users can edit report metadata, rerun reports with new parameters,

and share their reports with other Lokahi Web users. Administrators can set reports as featured

reports which then make those reports available to the general public.

The report generation interface allows users to select devices, time windows, and which products

should be generated. When a user selects a time window and an estimated signal source location,

the interface automatically lists available sensors for that time window sorted by distance from the

signal source. This makes it easy for users to determine which sensors to include in the report by

seeing how far sensors are from estimated signal sources.

When a user has selected all configuration options, a report analysis request is serialized with

Protocol Buffers and sent to the Lokahi Analysis service where the report is actually generated.

Once the report is generated, the analysis service sends a response back to Lokahi Web and Lokahi

Web displays the newly minted report.

The report interface also allows users to download raw sensor data for the selected devices over

the selected time range.

An example of the report interface is provided in Figure 3.30.

An example of a report with one device is provided in Figure 3.31.

Users have the ability to sanitize reports. This removes timing, device, and location information

from the reports and instead displays these values as relative offsets. For example, time is offset

as seconds since 0 and location is offset as distance from an unknown source. This allows users to

share sensitive reports while removing identifying information.

91

Figure 3.28: Sensor Group Status

92

Figure 3.29: Data Explorer Interface

Figure 3.30: Report Creation Interface

93

Figure 3.31: Lokahi Web Report

94

Figure 3.32: Lokahi Global Collection

Each report also has a link that allows users to download the raw sensor data that was used in

generating the report.

The metadata of each report can also be directly edited. This includes adding Annotation

Phenomena to classified Incidents. This is fundamental for Lokahi’s goals of building up a labeled

dataset for future machine learning endeavors.

Finally, there is a “Print Version” interface of reports that removes some of the metadata,

rearranges the maps and plots for printing or distribution.

Global Collection

The global collection interface shows the last location of every device that Lokahi has ever re-

ceived. This interface is useful for showing sensor deployment adoption. This interface is shown in

Figure 3.32.

Lokahi Geofenced Alerts

Lokahi utilizes Google’s Firebase Cloud Messaging (FCM) to send geofenced alerts to mobile de-

vices. Since we know the location of each device through its metadata, it is possible to define a

bounding box in which only devices within that bounding box will receive an alert.

This is useful when we want to alert users of our sensors to specific events and provides a means

of producing actionable insights that can increase S2N. As an example, we may wan to collect

data on an upcoming SpaceX launch in Florida. We can create a bounding box for all users in the

target area and alert them to an upcoming launch and ask them to turn on their sensors for data

collection.

The interface for this is provided by “Lokahi Web”. Once an administrator selects their bound-

ing box and supplies their alert message, Lokahi Web uses the FCM API for queuing a message to

all sensors in the target area.

95

Figure 3.33: Geofence Alert Interface

An example of the alerting interface is provided in Figure 3.33.

96

CHAPTER 4
EVALUATION

Evaluation of the Laha framework involves deploying reference Laha-compliant DSNs, validating

the data collected from the reference implementations, and then comparing and contrasting various

metrics for each of the stated goals. Metrics were collected during a set of experiments for each of

the Laha reference implementations in summer 2019.

The following sections describe my approach to deploying the reference implementations, data

validation, evaluating the main goals of the Laha framework, and evaluating the tertiary goals of

the Laha framework.

4.1 Deploy Laha reference implementations on test sites

Both the OPQ and Lokahi reference implementations were deployed to test sites where validated

data collection took place. The following sections describe the reference implementation deploy-

ments in detail.

4.1.1 OPQ Reference Deployment

Fifteen Laha-compliant OPQ Boxes were deployed over the UH Manoa microgrid during the Sum-

mer and Fall of 2019.

The placement strategy I utilized aimed to maximize our ability to collect distributed PQ Events

by placing sensors on the same electrical lines. We also considered placing Boxes in locations co-

located with sensitive or demanding electrical equipment in the hope of seeing PQ Events generated

from this equipment. Finally, we considered data access in terms of network availability and ground

truth availability. Working with my colleagues and the Office of Energy Management, I selected

the 15 locations for the campus wide deployment. Table 4.1 displays the details of the UH Manoa

campus deployment and justifications for choosing those locations.

97

Box Location Latitude Longitude

1000 POST 1 -157.816237 21.297438

1001 Hamilton -157.816173 21.300332

1002 POST 2 -157.816305 21.297663

1003 LAVA Lab -157.816034748669 21.29974948387028

1005 Parking Structure Ph II -157.819234 21.296042

1006 Frog 1 -157.823122 21.29805

1007 Frog 2 -157.822819 21.298046

1008 Mile’s Office -157.8137681609306 21.30386147625208

1009 Watanabe -157.815817 21.298351

1010 Holmes -157.816104 21.297011

1021 Marine Science Building -157.8156900462205 21.29789461271471

1022 Ag. Engineering -157.8154874938278 21.30163608338939

1023 Law Library -157.817361 21.296328

1024 IT Building -157.816451 21.29886

1025 Kennedy Theater -157.815225 21.299282

Table 4.1: OPQ Deployment

Determination of electrical lines was aided by the UH Manoa electrical blueprint as displayed

in Figure 4.1.

98

Figure 4.1: UH Deployment Grid Topology
99

A graphical representation showing the complete coverage of Boxes on the UH Manoa microgrid

is displayed in Figure 4.2.

Figure 4.2: UH Deployment

All devices were placed in a location that had access to UH Manoa’s wireless network. As soon

as they were installed, they started transmitting PQ data for that location.

4.1.2 Lokahi Deployment

Over a period of three months, data was collected from over 100 Lokahi sensors at large distributed

globally.

Figure 4.3 shows the number of active Lokahi sensors sampling at different sampling rates over

this period.

100

Figure 4.3: Active Lokahi Sensors

Data was collected globally. The next series of Figures will show where data was collected from

using the Lokahi network over the deployment window. It should be noted that this map only

displays data from sensors that recorded public data. This was done to protect the privacy of users

that have marked their data as private. Other results for the Lokahi network utilize the full data

set of public and private data. I took care to not expose any private details and only provide results

as statistical summaries.

Figure 4.4 shows Lokahi sensors deployed in the state of Hawaii.

101

Figure 4.4: Lokahi Sensors: Hawaii

Here, we can observe sensor coverage on the islands of Oahu, Maui, and the Big Island of

Hawaii.

Figure 4.5 shows Lokahi sensors deployed across North America.

102

Figure 4.5: Lokahi Sensors: North America

Lokahi has provided significant sensor coverage over the North American continent with most

sensors located in the United States and others located in Mexico and Canada.

Figure 4.6 shows Lokahi sensors deployed through Central and South America.

103

Figure 4.6: Lokahi Sensors: Central and South America

Here we can see sensors that were deployed in Columbia, Costa Rica, and Brazil.

Figure 4.7 shows Lokahi sensors deployed through Europe and Western Asia.

104

Figure 4.7: Lokahi Sensors: Europe and Western Asia

Europe also provides excellent coverage for the Lokahi network. You will also note that Lokahi

sensors have been deployed to several countries outside of Europe including Turkey, Israel, Ukraine,

and Russia.

Figure 4.8 shows Lokahi sensors deployed through South-East Asia.

105

Figure 4.8: Lokahi Sensors: India and South-East Asia

Here, we can see Lokahi sensors that have been deployed in India, Bangladesh, Sri Lanka,

Pakistan, and Malaysia.

Figure 4.9 shows Lokahi sensors deployed through Oceania.

106

Figure 4.9: Lokahi Sensors: Oceania

Lokahi sensors have been deployed to the Western, Southern, and Eastern coasts of Australia

as well as New Zealand.

Figure 4.10 shows Lokahi sensors deployed through East Asia.

107

Figure 4.10: Lokahi Sensors: East Asia

Here we can observe Lokahi sensors that have been deployed to China, Taiwan, Russia, South

Korea, and Japan.

4.2 Validate data collected by Laha deployment

Data from both experimental deployments were validated against ground truth data as described in

Section 1.6. In the OPQ deployment, ground truth is provided by UH meters installed at the main

of each building. In the Lokahi deployment, ground truth was provided by high-end calibrated

microphones.

Results of data validation are provided in Section 5.1.

4.2.1 Validate data collected by OPQ deployment

Ground truth for the UH Manoa microgrid deployment is provided by UH system installed power

meters. These meters were installed at the main of most buildings and can provide ground truth

for voltage, frequency, and THD Trends, as well as provide a maximum bounds of these features

108

enabling me to determine if the incidents we see in OPQ would have been seen by the UH meters.

The UH meters provide data Trends for voltage, frequency, and THD in rolled-up one minute

windows. Each window provides descriptive statistics for the feature it is measuring including

minimum, maximum, average, and standard deviation of the feature values during the one minute

window. By using the minimum and maximum values, I was able to provide upper and lower

bounds for whether or not the PQ incidents we observed were valid or not.

As an example, if an Incident is created by Mauka with a voltage sag down to 110V, then I

would expect the nearest ground truth meter to also have a minimum voltage value near 110V for

the same time window. If the minimum value from the UH meter does not show a voltage drop,

then we know that Mauka identified a false positive.

I have written a separate service for OPQ called the “ground-truth-daemon”. The role of this

daemon is to query the UH Manoa metering HTTP API once per hour and retrieve the previous

hours worth of data for all ground truth meters co-located with an OPQ Box or near an OPQ Box.

The descriptive statistics along with the meter metadata are stored in MongoDB so that OPQ

data can be compared to the ground truth data to identify false positives and false negatives. The

ground truth data model was described in Table 3.31.

Since one of the core tenants of Laha is to throw away uninteresting data, we need to store all

ground truth data in an effort to identify false negatives.

Two types of validation are performed. First, we compared Measurements and Trends collected

by OPQ to Trend data collected by the UH meters. Then, we generated a report that showed the

percent different between the two sets of meters. Any differences larger than 5 percent are recorded.

The second type of validation I performed was checking the bounds of Mauka generated Inci-

dents. When a voltage Incident is generated, the sag or swell is compared against the minimum

and maximum ground truth Trends. Differences larger than 5 percent were recorded. Validation

for frequency and THD was performed in a similar way.

Results of validating OPQ data are provided in Section 5.1.1.

4.2.2 Validate data collected by Lokahi deployment

Ground truth for Events and Incidents are provided by cross-referencing known source signals to

data collected by the Lokahi network. Lokahi Events only become Incidents when they can be cross

referenced with a known source signal. Because of this, all Incidents within Lokahi are trivially

validated. Thus, it becomes a question of validating the Lokahi sensors’ ability to characterize

infrasonic signals of interest. To this end, I will examine results provided by Asmar [5] which discuss

the ability for the Lokahi sensors to be able to accurately quantify and characterize infrasound.

These results can be found in Section 5.1.2.

109

4.3 Use Laha deployments to evaluate the main goals of the frame-

work

The main goals of this network are provided in Section 1.5. The Laha deployments for both OPQ

and Lokahi were used to evaluate each of the main goals this framework claims to provide. First,

that Laha is a generally useful framework representation for DSNs. Second, that Laha provides the

ability to turn primitive sensor data into actionable data and insights. Third, that Laha’s tiered

management of sensor data provides metrics on maximum bounds for storage requirements and

graceful degradation of DSN performance.

Each deployment requires different techniques for performing evaluation.

In the OPQ deployment, OPQ Boxes are deployed and co-located with industry standard,

calibrated, reference sensors. Each of these sensors cost thousands to obtain and install, collect

all the data all the time, and can only be connected to the power main as it enters a building.

These sensors provide a means for verifying signals received or not received by OPQ, as well as

confirming long term trend data. I have been provided access to these sensors and stored data via

the Office of Energy Management at UH Manoa. The data is accessible via an HTTP API. The

Office of Energy Management at UH Manoa has also provided the full schematics for the UH power

grid. This was used as a ground truth for topology estimates and distributed signal analysis. OPQ

Boxes are placed in strategic locations on the UH Manoa campus specifically in order to evaluate

the distributed nature of PQ signals. For example, OPQ Boxes are placed on the same electrical

lines as well as separate electrical lines to observe how PQ signals travel through an electrical grid.

In the Lokahi deployment, I had the opportunity to generate infrasound signals using a cal-

ibrated infrasound source [48]. The source can be tuned to produce infrasound at configurable

frequencies and amplitudes. The source works by attaching a variable pitch propeller to an electric

motor that can be driven by a waveform generator. The source can generate signals that can be

observed at large stand off distances, over tens of kilometers. Similar to the OPQ deployment, sen-

sors within the Lokahi deployment were co-located with industry standard, calibrated, infrasound

sensors. These sensors can provide a metric of signals that were correctly observed, incorrectly ob-

served, or not observed at all by the Lokahi deployment. Further, infrasound itself is characterized

quite well by various geophysical equations.

Evaluation of the main goals of this network are provided in the following sections. Results of

these evaluations can be found in Section 5.1, Section 5.2, Section 5.3, Section 5.4, and Section 5.5.

4.3.1 Evaluation of the Generality of this Framework

I claim that the Laha framework is useful and general enough to be applied to DSNs in different

domains. To test this, I designed, developed, and deployed two DSNs. The first, OPQ, measures

distributed PQ signals on the electrical grid. The second, Lokahi, observes infrasound signals

110

traveling through the atmosphere.

To evaluate the generality of the Laha design, I provided metrics for whether or not each

deployment is able to fulfill the goals of the given network.

I expect the PQ network, OPQ, to be able to detect and classify common PQ issues. I expect

OPQ to observe voltage dips, voltages swells, frequency dips, frequency swells, transients, and high

levels of THD. A count of these signals were kept and compared against industry standard PQ

meters co-located with each sensor. By comparing these signals to the ground truth, we were able

to tabulate a number of false positives and false negatives. In order to be considered effective, I

would expect to be able to classify each of these common PQ signals, collect a set of each of the

PQ signals while maintaining a low number of false positives and false negatives as compared to

the industry standard sensors. In general, a negative result here would be not being able to detect

PQ signals of a specific type or having a high number of false positives or false negatives.

Further, another stated goal of OPQ is to detect and classify distributed PQ incidents. That

is, PQ signals that are observed by more than one sensor in situations where OPQ sensors are not

co-located. First, I evaluated if OPQ is capable of detecting distributed PQ signals. I expect OPQ

to at least observe one distributed signal during the test deployment, but would not be surprised

to see many. By working with the Office for Energy Management at UH Manoa, I used a list of

known PQ source events along with signals collected by OPQ and the industry standard sensors

to provide a list of false positives and false negatives for the number of distributed PQ incidents

observed by OPQ.

I expect the infrasound network, Lokahi, to be able to securely detect and report on infrasound

incidents from a large collection of heterogeneous smartphone based infrasound sensors. This

network prioritizes availability and security even in the face of network issues or no network at all.

I claim that Laha is a useful framework for a DSN such as this and evaluated if Laha is able to

meet the goals of this network.

To evaluate the effectiveness of Laha as implemented by Lokahi, I deployed 50 heterogeneous

Lokahi smartphone sensors at predetermined distances from a calibrated infrasound source. I

then used the calibrated infrasound source to generate infrasound signals of different amplitudes

and frequencies. While signals are being generated, I disabled network access for the sensors to

simulate real life network drop outs of sensors. I disabled the networks for time periods of 1 minute,

30 minutes, and 1 hour.

Then, for each sensor, I calculated the number of false positives and false negatives for detec-

tions of infrasound signals. In order for Laha to be a useful framework for Lokahi, Lokahi must

demonstrate that not only can it detect infrasound signals at different frequencies and amplitudes,

but it must also do this while maintaining a low number of false positives or false negatives.

Further, as availability is a major priority of this network, network outages must be handled

without signal loss. To evaluate this goal, I measured the amount of false negatives (or missed

111

signals) due to Laha’s data management and the interplay with network outages. I would expect

that if Lokahi implements it correctly, we should not see a rise in false negatives. A less great result

would be an increase in false negatives.

Finally, backed by the metrics for both deployments, I provide a critical discussion on what

types of DSNs Laha is well suited for and what types of DSNs Laha is not well suited for. This

includes a discussion on which parts of the Laha design are useful or a detriment to a given goal of

the DSN.

The following sections continue to discuss the evaluation strategies required to show that Laha

is a generally useful representation for a DSN.

Results providing evidence the the generality of the Laha framework can be found in Section 5.2.

4.3.2 Evaluation of Converting Primitive Data into Actionable Insights

An important goal of any DSN is to convert primitive sensor data into actionable insights. This is

generally accomplished by adding some kind of context associated with the data such as classifi-

cations of a signal or linking the data with other data by comparing similarities in time, space, or

other physical features.

I claim that Laha’s use of Actors acting on and moving data between levels in the Laha hierarchy

provides a useful and generic approach to systematically adding context to data as it moves through

the framework. Laha is designed with a specific number of levels where data within each level shares

the same type. In each deployment, I evaluated the usefulness of each level with regards to adding

context to the data.

An early approach to organizing data for contextualization is the Data Grid project[9] which

proposed two services for building higher level extractions, storage systems and metadata man-

agement. This framework provided the context on top of data needed to easily build replication

services for the data, which was important since one of the major goals of this framework was data

availability and policy management. Data Grid also maintains data uniformity and does not allow

complex schemas. Data Grid does not provide a mechanism for discarding noisy data. Laha differs

from Data Grid by providing support for complex metadata schemas, focuses on data reduction

strategies, and provides more support for driving context. A more recent paper from Wu et al.[76]

presents the HACE framework which is a framework designed for applying context to Big Data by

making integration with other data sources and performing data fusion a first class member of the

framework. This paper also examines algorithms for mining of complex and dynamic data, such

as those generated from sensor networks. Laha differs from HACE by using a tiered approach to

manage data volume while still hopefully generating actionable insights.

In both deployments, I evaluated the number of false negatives for incident classification. Each

level in the framework is responsible for not only adding context, but deciding if data should be

moved upward through the levels, adding more context along the way, or discarding data because

112

a level does not think the data is “interesting”. I kept track of the number of false negatives and

which level was responsible for discarding the data with the signal. Using this approach, I evaluated

the effectiveness of each level to determine which levels correctly identify signals and which levels

do not correctly identify signals, thus discarding the data.

In order to be useful, I expect each level to add context to the data while maintaining a low

level of false negatives.

Using these metrics, I provide a discussion on which domains a leveled approach may work well

for versus which domains a leveled approach might not provide useful benefits. This discussion is

provided in the results chapter (Section 5.2.4).

I claim that Laha is able to provide additional context and actionable insights through a level

called Phenomena. Phenomena utilize predictive analytics to provide context and actionable in-

sights over the sensor domain. First, I evaluated if Phenomena take place in practice for both of

the Laha deployments.

To evaluate Phenomena in the OPQ network, OPQ must observe a cyclical incident such as

voltage swells occurring every afternoon due to solar output or an electric motor turning on at the

same time every day. Once a cyclical incident is observed, OPQ must correctly create predictive

Phenomena that predict the same incident happening in the future. Assuming predictive Phenom-

ena are created, I measured the amount of false positive and false negative predictions. A positive

result would show that now only is OPQ capable of making predictive Phenomena, but also that a

high percentage (> 50%) of the predictions are correct.

Evaluation of predictive Phenomena in the Lokahi infrasound network followed a similar strat-

egy. However, since I can control the infrasound source, I can run an experiment that creates

cyclical and non-cyclical signals. I then tested Lokahi’s ability to not only create predictive Phe-

nomena, but also show that the predictions are accurate, that is, greater than 50% of them are

correct.

A negative result would be that if either of the networks are not able to create predictive

Phenomena or a large number of false positives or false negatives (combining for <50% prediction

accuracy).

Adding context to classified Incidents is the act of providing a statistical likelihood of the

underlying cause of the Incident. These include things like showing that a voltage sag is caused

by turning on the dryer every day at 2PM or identifying an infrasound signal as a repetitive flight

pattern near an airport. Context is provided by external sources to the DSN (such as users or by

performing data fusion with other correlating data sets).

Evaluating contextualized Events consists of setting up experiments where I assign context for

a specific set of signals and resulting Incidents. Then, testing to see if Phenomena are able to

correctly apply context to Incidents when the same signals are generated again. I recorded the

number of false positives and false negatives for assigning context to Incidents.

113

A positive result would be to see the correct context applied to incidents more than half of the

time. That is, I expect context to be applied correctly to at more than 50% of Incidents for which

context has been previously defined.

I expect to see contextualization work better in DSNs where signals provide more measures for

discrimination. For example, PQ networks contain many different types of classified PQ signals,

however there is a small subset of causes attributed to each type of PQ signal classification.This

decreases Laha’s search space and in theory should make it easier to provide context.

Results for converting primitive data into actionable insights are provided in Section 5.3.

4.3.3 Evaluation of Tiered Management of Big Data

The goal of tiered management of Big Data is to add a mechanism that provides a maximum bounds

on storage requirements of sensor data at each level in the Laha hierarchy while simultaneously

reducing sensor noise as Laha Actors move “interesting” data upwards. This in turn should decrease

the amount of false positives since forwarded data is more likely to include signals of interest and

is less likely to be sensor noise.

Other approaches to Big Data management include compression[65] or storage systems where

the goal is to have a distributed file system and move data close to where it is being processed, such

as the Hadoop Distributed File System[74]. Other systems such as NiFi[27] provide a nice interface

for ingestion and movement of data between Big Data tools while also providing data provenance,

but do not go far enough in focusing on data reduction and graceful degradation. Carney et al.[7]

discuss how monitoring applications require management and clean up of stale sensor data.

Evaluation of False Positives and False Negatives

It is possible that Laha threw away data that did contain signals of interest. In this case, detection

or classification Actors did not observe the signals because the data has been discarded leading to

increased false negatives. On the other hand, by reducing false positives and increasing the signal-

to-noise ratio as data moves upward, Phenomena has a better chance of optimizing triggering,

detection, and classification which may in turn inform Laha to save data that would have been

previously thrown away. In this way, it is possible that Laha reduces false negatives.

I evaluated the number of false positives and false negatives in detections, classifications, and

Phenomena compared against industry standard reference sensors. A positive outcome for this

metric would be a reduction in both false positives and false negatives compared to an approach

that does not use tiered data management. A negative result would be an increase in either false

positives or false negatives.

Results comparing collected data to ground truth data can be found in Section 5.1.

114

Evaluation of DSN System Requirements

I examined theoretical data storage requirements for any DSN that utilizes Laha as an abstract

model.

Let us consider the theoretical bounds on storage requirements at each level in the Laha hier-

archy. First we will consider the storage bounds when all parameters are known and then we will

look at bounds using estimated parameters for each level.

Results for DSN system requirements are provided in Section 5.4.

IML Requirements The IML level contains instantaneous samples from a sensor. These values

are generally stored in memory on the sensors. We can calculate several useful metrics for this

layer.

First, we can calculate the IML size for an individual sensor SSEN , with a sample size in bytes

SSAMP , a sample rate in Hz SR, and a time window in seconds T . This is shown in Equation 4.1.

SSEN = SSAMP ∗ SR ∗ T (4.1)

Next, we can calculate the IML size for the entire network SIML by summing up the IML size

for each individual sensor B in the network. Equation 4.2 provides these calculations.

SIML =

Bn∑
i=1

SSENi (4.2)

We can estimate upper and lower bounds when the number of sensors recording data to the

IML varies over time by examining the mean number of sensors that recorded data µNSEN over a

time period in seconds T .

Equation 4.3 provides the calculations for finding the mean size of the IML with varying amounts

of sensors.

µSIML = SSAMP ∗ SR ∗ µNSEN ∗ T ± δSIML (4.3)

Equation 4.4 and Equation 4.5 provide the error bounds for calculating the mean IML size.

δNSEN =
σNSEN√

T
(4.4)

δSIML = δNSEN ∗ |SSAMP ∗ SR ∗ T | (4.5)

Each sample in this level is generally stored using built in machine types that generally take

1, 2, 4, or 8 bytes. Further, depending on the network requirements, each sample may or may

115

not have an associated timestamp. Each timestamp generally adds between 4 and 8 bytes to each

sample.

Table 4.2 provides the expected size of the IML layer for the OPQ and Lokahi networks over

time periods of one day, one week, and one year. These values are constant for all OPQ and

Lokahi networks independent of deployment because they only rely on constant values defined by

the sensors themselves.

Description Rate Size Data/Day Data/Week Data/Year

OPQ Box 12 kHz 2 2.07 GB 14.51 GB 756.86 GB

Lokahi Sensor 80 Hz 4 0.03 GB 0.19 GB 10.10 GB

Lokahi Sensor 800 Hz 4 0.28 GB 1.94 GB 100.92 GB

Lokahi Sensor 8 kHz 4 2.76 GB 19.35 GB 1009.15 GB

Table 4.2: IML Constraints per Sensor

It is evident that the IML layer produces a significant amount of data, most of which is noise.

Left unbounded an OPQ network with 15 Boxes can easily grow beyond 11 terabytes per year and

a Lokahi network with 15 sensors at the maximum sampling rate can grow to over 15 terabytes per

year!

AML Requirements Aggregate Measurements provide rolled-up feature extracted values gen-

erated from the IML layer. These often include multiple features (i.e. voltage, frequency, THD)

and descriptive statistics of each feature (i.e. minimum, maximum, average, variance). It is worth

noting that the theoretical bounds may differ from the actual bounds in practice due to the way

the underlying storage engine persists the values. These differences will be examined in the results

section.

Laha allows for multiple sub-levels within the AML. For instance, the OPQ DSN has both

Measurements and Trends AMLs which summarize data at different window lengths. We need to

take this into consideration when generating bounds for the AML.

To simplify calculating the bounds on the AML level, we make an assumption that the variance

of the size of each AML value is close to 0. The actual metrics for each AML value remain constant

sized while the metadata associated with each AML may differ in size. Since each AML value

contains similar metadata, the variance on the size of the metadata should remain small.

Equation 4.6 computes the size of a sub-level within the AML SSL by examining the size of an

AML entry SV , sub-level send rate in Hz SR, sensing time in seconds T , and a set of sensors B.

SSL = SV ∗ SR ∗ T ∗Bn (4.6)

116

Equation 4.7 shows the size of the AML SAML including all sub-levels.

SAML =

SSLn∑
i=1

SSLi (4.7)

Similar to what was done for the IML, we can estimate bounds assuming the number of sensors

sending data is not constant. Equation 4.8 and Equation 4.9 provide the calculations for mean

sub-AML level size and the mean size of the AML respectively.

µSSL = SV ∗ SR ∗ T ∗ µB ± δSSL (4.8)

µSAML =

SµSLn∑
i=1

µSSLi ± δSAML (4.9)

Equation 4.10, Equation 4.11, and Equation 4.12 provide the error on mean calculations for the

AML.

δB =
σB√
T

(4.10)

δSSL = δB ∗ |SV ∗ SR ∗ T | (4.11)

δSAML =

√√√√δSSLn∑
i=1

(δSSLi)
2 (4.12)

Table 4.3 contains the theoretical bounds of the AML layer without any optimization for OPQ

and Lokahi networks. These values provide the upper bounds per sensor for periods of one day,

one week, and one year. The OPQ DSN utilizes two sub-levels (one for Measurements and one for

Trends). The Lokahi network contains only one level, but each sampling rate has its own IML rate.

We provide the upper bounds for each possible sampling rate that Lokahi utilizes. These values

are constant for all OPQ and Lokahi networks independent of deployment because they only rely

on constant values defined by the sensors themselves.

117

Description Rate Size Data/Day Data/Week Data/Year

OPQ AMLMeasurements 1 Hz 145 12.52 MB 87.69 MB 4.6 GB

OPQ AMLTrends
1
60 Hz 325 0.47 MB 3.72 MB 170.82 MB

OPQ AMLTotal 12.99 MB 91.41 MB 4.77 GB

Lokahi AML80Hz
1

51.200 Hz 2546 27.65 MB 193.54 MB 10.09 GB

Lokahi AML800Hz
1

40.960 Hz 2546 276.48 MB 1.94 GB 100.92 GB

Lokahi AML8000Hz
1

32.768 Hz 2546 2.76 GB 19.35 GB 1.01 TB

Table 4.3: AML Constraints per Sensor

Left unoptimized and taken over the course of a year for a typical OPQ or Lokahi deployment

with 15 sensors, we would expect an upper bound of 71.55 GB collected from the OPQ network

and 15 TB of data to be collected from the Lokahi network. Why is the AML so much larger in

Lokahi as compared to OPQ? It is due to a requirement of the Lokahi network to store raw data

along with its AML windows. Not only do Lokahi AML windows contained the feature extracted

features of the stream, but they also contain the raw data associated with that window.

DL Requirements The detections level contains metadata and associated sampled high fidelity

data that was returned from sensors for a given time window. A single detection can contain

samples from multiple data streams for a single Event of interest. The detections level contains

metadata and associated sampled high fidelity data that was returned from sensors for a given time

window. A single detection can contain samples from multiple data streams for a single Event of

interest.

Similarly to the AML level, we assume that the metadata for each detection remains a constant

or close to constant size and we focus on the raw data which dominates the storage requirements

in the DL.

I make the assumption that the window lengths for each high-fidelity stream within a single

detection are equally sized. In reality, it is possible that a sensor encounters an error and does not

return data for the entire requested time window.

Calculating the bounds of this collection is further complicated by the fact that Detections are

not generated at a constant rate and the window length of the detections can be highly variable.

Further, the number of sensors that return data for any given detection is also variable. Therefore,

I provide statistical calculations for these bounds.

First, let us examine calculating the bounds when all parameters are known for a sub-detection.

A sub-detection is data returned from a single sensor within a detection. The bounds for each

sub-detection is similar to the bounds for a single sensor in the IML, because this level contains

the IML data plus some close to constant sized metadata providing context to the IML data.

118

Equation 4.13 computes the size of a sub-detection SSD using a given sensor sampling rate in

Hz SR, the length of the detection in seconds T , and the size of the sub-detection metadata SSDM .

SSD = SSAMP ∗ SR ∗ T + SSDM (4.13)

.

SDL =

SDn∑
i=0

SDi (4.14)

There is a clear upper bound on the size of the DL for a single sensor in the pathological case

that the entire data set recorded by a single sensor is one long single Detection. In this pathological

case, the upper bounds of the DL is equal to the upper bounds of the IML plus some constant

metadata size. The pathological case is not incredibly useful, so, let us look at this from a statistical

standpoint.

We can provide estimated bounds on the DL with an estimated data rate µDR which provides

the mean number of bytes generated per second within the DL. It should be noted that this includes

the parameters for all sub-detections as well. The calculation for the mean size of the DL is given

in Equation 4.15.

µSDL = µDR ∗ T ± δSDL (4.15)

The errors for the mean size of the DL are given in Equation 4.16 and Equation 4.17.

δDR =
σDR√
T

(4.16)

δSDL = δDR ∗ |T | (4.17)

Let us next compare the estimated sizes of the DL for the OPQ and Lokahi networks using

statistics gathered for these networks. These values were obtained from actual data collected

during deployments of the OPQ and Lokahi networks. Table 4.4 provides the parameters used for

these comparisons.

Network µDR Data/Day Data/Week Data/Year

OPQ 40.69 3.51 MB 24.77 MB 1.29 GB

Lokahi 402.82 34.80 MB 243.63 MB 12.70 GB

Table 4.4: Estimated DR

119

IL Requirements The Incidents Level provides added context on top of the DL in the form of

signal of interest classifications. This level is structured similarly to the DL in that it contains

trimmed down IML samples from one or more sensors over a varying time window and added

context in the form of metadata. Due to these similarities, the bounds calculations are also quite

similar.

The IL differs from the DL in that the associated IML samples in the IL are always subsets of

the samples in the DL. The IL also differs from the DL in the fact that the IL does not have a

concept of “sub-incidents”. Every Incident in the IL is associated with exactly one Event waveform.

When all parameters are known, the individual size of an Incident SI within the IL can be

calculated over the size of each sample SSAMP , sample rate in Hz SR, length of the incident T + I,

and size of the associated metadata SM with Equation 4.18.

SI = SSAMP ∗ SR ∗ TI + SM (4.18)

Then, computing the size of the entire IL can be done with a simple summation as shown in

Equation 4.19.

SIL =

SIn∑
i=0

SIi (4.19)

There is a clear upper bound on the size of the IL for a single sensor in the pathological case

that the entire data set recorded by a single sensor is one long single Incident. In this pathological

case, the upper bounds of the IL is equal to the upper bounds of the IML plus some constant

metadata size. The pathological case is not incredibly useful, so, let us look at this from a statistical

standpoint.

We can provide estimated bounds on the IL assuming a mean Incident rate in bytes per second

µIR as shown in Equation 4.20.

µSIL = µIR ∗ T ± δSIL (4.20)

Equation 4.21 and Equation 4.22 provide error bounds on the estimated size of the IL.

δIR =
σIR√
T

(4.21)

δSIL = δIR ∗ |T | (4.22)

Let us next compare the estimated sizes of the IL for the OPQ and Lokahi networks using statis-

tics gathered for these networks. These values were obtained directly from data collected during

OPQ and Lokahi deployments. Table 4.5 provides the parameters used for these comparisons.

120

Network µDR Data/Day Data/Week Data/Year

OPQ 184.41 15.93 MB 111.53 MB 5.82 GB

Lokahi 37.12 3.21 MB 22.45 MB 1.17 GB

Table 4.5: Estimated IR

PL Requirements The Phenomena Level provides actionable insights and context beyond what

is provided in the IL. Examples of added context include predictive analysis, Annotations, or

similarity metrics between Incidents. The Phenomena level consists mainly of metadata describing

the Phenomena. Different types of Phenomena require varying amounts of metadata.

Equation 4.23 calculates the size of the PL SPL by summing the size of each Phenomena SP

that is stored.

SPL =

SPn∑
i=0

SPi (4.23)

The size of the PL can be estimated by Equation 4.24 where µPR is the mean Phenomena data

rate per second and T is the number of seconds that the network is up.

µSPL = µPR ∗ T (4.24)

Next, I will compare the estimated sizes of the PL for the OPQ and Lokahi networks using statis-

tics gathered for these networks. These values were obtained directly from data collected during

OPQ and Lokahi deployments. Table 4.6 provides the parameters used for these comparisons.

Network µDR Data/Day Data/Week Data/Year

OPQ 0.22 0.02 MB 0.13 MB 6.92 MB

Lokahi 0.01 0.86 kB 6.05 kB 314.50 kB

Table 4.6: Estimated PL

Why are the Phenomena data amounts so low compared to the other levels? The main reason

is that Phenomena are few and far between. Another reason is that Phenomena consist mainly of

metadata and do not copy data from lower levels into it. Instead, Phenomena points to data in

lower levels and adjusts the TTL values of lower levels to match that of the Phenomena.

Comparing Laha Requirements Now that we can compute the bounds for different levels

within the Laha hierarchy, let us examine how the requirements compare between each level given

121

data that resembles the OPQ and Lokahi DSNs. This data was generated using parameters gathered

from OPQ and Lokahi deployments.

Analytically, when all parameters are known, the size of the entire DSN SDSN can be computed

as shown in Equation 4.25.

SDSN = SIML + SAML + SDL + SIL + SP (4.25)

Statistically speaking, the mean size and error of the entire DSN are provided by Equations 4.27

and Equation 4.26 respectively.

δSDSN =
√

(δSIML)2 + (δSAML)2 + (δSDL)2 + (δSIL)2 + (δSP)2 (4.26)

µSDSN = µSIML + µSAML + µSDL + µSIL + µSP ± δSDSN (4.27)

First, let us look at the size of Laha with parameters estimated from OPQ. The estimated

parameters for this scenario are given in Table 4.7.

Field Mean

SSAMP 2

SR 12000

SMEASUREMENT 145

RMEASUREMENT
1
1

STREND 365

RTREND
1
60

µNSEN 1

µDR 40.69

µIR 184.41

µPR 0.22

Table 4.7: OPQ Estimated Parameters

Figure 4.11 shows the estimated bounds of the entire network over the course of three years.

122

Figure 4.11: Estimated Laha (OPQ)

We can gather that the bounds on the entire OPQ network given estimated parameters from

the network are 2310 gigabytes over a period of 3 years. It is clear that the IML provides most of

this data. We can also see that over time, the DL dominates all other levels except the IML.

By representing the data as a pie chart (Figure 4.12), we can gain a better understanding of

how these levels compare at the end of a year. The first (left most) pie chart shows that the IML

dominates the overall data size. This makes sense because this level represents raw samples which

is always going to be the largest set of data.

By removing the IML from the results, the second pie chart (right most) shows how the other

levels compare to each other. From this, we can gather that the DL is the next largest. This

makes sense because the DL represents windows of samples that may or may not include Incidents,

and therefore the DL should always be larger than the IL which is essentially the DL with further

filtering and classification.

We also observe that the size of the AML also takes up the next largest percentage of space.

This is mainly due to the fact that OPQ collects aggregate Measurements once per second. Left

unbounded, this collection can become quite sizable.

123

Figure 4.12: Estimated Laha (OPQ)

Finally, we summarize the results in Table 4.8.

Laha Level µSize GB

IML 2270.59

AML (Measurements) 13.71

AML (Trends) 0.57

AML (Total) 14.29

DL 3.84

IL 22.21

PL 0.02

Laha (Total) 2310.97

Table 4.8: Summarized Laha Results (OPQ)

Let us next perform the same evaluation, but for the Lokahi network. Table 4.9 provides the

estimated parameters gathered from the Lokahi deployment. Since we are examining upper bounds,

we will only use one of Lokahi’s sampling rates (the highest 8000 Hz) in the evaluation.

124

Field Mean

SSAMP 4

SR 8000

STREND 2471

RTREND
1

32.768

µNSEN 1

µDR 402.82

µIR 37.11

µPR 0.01

Table 4.9: Lokahi Estimated Parameters

Figure 4.13 shows the estimated unbounded Laha growth for Lokahi.

Figure 4.13: Estimated Laha (Lokahi)

Figure 4.14 shows the makeup of unbounded data within Laha for Lokahi.

125

Figure 4.14: Estimated Laha (Lokahi)

Finally, we summarize the results in Table 4.10.

Laha Level µSize GB

IML 2819.53

AML (Total) 6.64

DL 35.49

IL 3.27

PL 0.001

Laha (Total) 2864.95

Table 4.10: Summarized Laha Results (OPQ)

Over the course of 3 years using estimated parameters supplied by the Lokahi network, the

network is expected to grow close to 2.8 TB.

Evaluation of TTL

In the previous section, I examined the data requirements for Laha with the assumption that data

is never discarded. In practice, this approach is unsustainable and will quickly lead to network

degradation in terms of storage, memory, and processing requirements. To address this issue, Laha

provides the concept of TTL (Time-to-Live) which is the amount of time that data is stored before

it is garbage collected.

Each level within the Laha hierarchy provides a dynamic and configurable TTL. Data is garbage

collected when it becomes older than its TTL. The TTL for data is adjusted when higher levels in

126

the hierarchy identity something of interest. For instance, if a Detection is identified in the DL,

then all data in the IML and AML that were used in the creation of the Detection are given a

TTL that matches the TTL of the Detection. Similarly, if an Incident is identified in the IL, then

all data in the IML, AML, and DL are given TTLs that match that of the Incident. This process

continues recursively throughout all levels of the Laha hierarchy.

Table 4.11 reviews the default TTLs provided at each level of the Laha hierarchy.

Laha Level Default TTL

IML 15 Minutes

AML (Measurements) 1 Day

AML (Trends) 2 Weeks

DL 1 Month

IL 1 Year

PL 2 Years

Table 4.11: Default Laha TTL

In the following sub-sections, I will look at the minimum, estimated, and maximum bounds for

each level in the Laha hierarchy with TTL enabled. The minimum bounds will always be the data

bounded by TTL without any data being saved by Events further up the hierarchy. The estimated

bounds will be calculated using estimated parameters that quantify the amount of data in each level

that is preserved by upper levels. The maximum bounds will be discussed in terms of pathological

cases where all data is preserved and no data is discarded. The maximum bounds for all levels is

equivalent to the bound of those levels without TTL optimization.

Simulating Laha I decided to simulate Laha using parameters gathered from the OPQ and

Lokahi networks to gain insights into data storage requirements. These simulations provide esti-

mated bounds of data on each level of the Laha hierarchy. The simulation runs at a granularity of

a second and simulates the IML (raw samples), AML (Measurements and Trends), DL (Events),

IL (Incidents), and PL Phenomena. The simulation maintains an in-memory database of simulated

data that is sorted by TTL. Items are discarded from the database when their TTL expires. Higher

levels save data from the lower levels at a similar rate as observed in the OPQ and Lokahi networks.

The following is a description of how the simulation works for the OPQ network. The simulator

for the Lokahi network works similarly, but with a different estimated parameter set.

At each time step:

1. 12000 samples are produced with a TTL of 15 minutes

127

2. 1 Measurement is produced with a TTL of 24 hours, 1 month, 1 year, or 2 years depending on

PORPHAN (measurement), PEV ENT (measurement), PINCIDENT (measurement), PPHENOMENA(measurement)

3. 1 Trend is produced if the time step if divisible by 60 with a TTL of 2 weeks, 1 month,

1 year, or 2 years depending on PORPHAN (trend), PEV ENT (trend), PINCIDENT (trend),

PPHENOMENA(trend)

4. 1 Event is produced if PEV ENT STEP with a TTL of 1 month, 1 year, or 2 years depending

on PORPHAN (event), PINCIDENT (event), PPHENOMENA(event)

5. 1 Incident is produced if PINCIDENT STEP with a TTL of 1 year or 2 years depending on

PORPHAN (incident), PPHENOMENA(incident)

6. 1 Phenomena is produced if PPHENOMENA STEP with a TTL of 2 years

7. Garbage collection is performed if the time step is divisible by 600 ticks (10 minutes)

8. Total items and size for each level are written to file every N time steps

Where PORPHAN (data) is the probability that the referenced data does not belong to a higher

level, PEV ENT (data) is the probability that the referenced data was saved by an Detection (Event),

PINCIDENT (data) is the probability that the referenced data was saved by an Incident, PPHENOMENA(data)

is the probability that the referenced data was saved by a Phenomena, PEV ENT STEP is the proba-

bility that an Event will be produced for any given time step, PINCIDENT STEP is the probability

that an Incident will be produced for a given time step, and PPHENOMENA STEP is the probability

that a Phenomena will be produced for a given time step.

Table 4.12 provides the estimated parameters used to run the OPQ and Lokahi simulations.

128

Parameter OPQ Lokahi

Sample Rate Hz 12000 80, 800, 8000

Sample Size Bytes 2 4

Measurement Rate 1
1 N/A

Measurement Size Bytes 145 N/A

Trend Rate 1
1

1
51.2 , 1

40.96 , 1
32.768

Trend Size Bytes 365 2471

% Data in Events 0.16 6.26

% Detections in Incidents 55.78 N/A

Mean Event Len Seconds 13.79 2010

Mean Incident Len Seconds 0.53 3389

Mean Event Size Bytes 330893 12923754

Mean Incident Size Bytes 12647 46169741

Event DR/second 40.66 0.000031

Incident DR/second 184.41 0.0000008

Phenomena DR/second 0.22 0.01

Simulation Tick Granularity 1 second 1 second

Simulation Ticks seconds/3 years, seconds/3 years,

Simulation GC Interval seconds/10 minutes, seconds/10 minutes

Simulation Write Data Ticks seconds/hour, seconds/hour

Table 4.12: Simulation Parameters

The full statistics can be found in the appendix in Section E.

Evaluation of IML with TTL The IML (Instantaneous Measurements Level) stores raw sam-

ples from the DSN. Traditionally, this is the largest and most noisy data set produced by the DSN

and thus has a very short TTL (which is often limited by the amount of on-board sensor memory).

I showed in the previous section that without TTL, this level grows very rapidly. The IML is

unique in that it is the only level that does not grow beyond its TTL. Instead, when Detections,

Incidents, or Phenomena are identified, data is coped from the IML into either the DL, IL, or PL.

This simplifies calculating the bounds of this level.

Calculating lower bounds of the IML for a network can be accomplished by simply bounding

its growth by its TTL. By substituting T in Equation 4.1 and Equation 4.3 with the the number

of seconds in the IML TTL (15 minutes).

Figure 4.15 shows the simulated IML data growth for a single sensor from the OPQ network

over the period of one day. We can observe that the IML converges to 25 MB after 15 minutes.

129

The spikes once the data converges is the delta added by a garbage collector that only runs once

every 10 minutes.

Figure 4.15: Simulated IML for OPQ

Figure 4.16 shows the simulated IML data growth for a single sensor from the Lokahi network

over the period of one day. Sensors within the Lokahi network have the ability to operate at

different sampling rates (80 Hz, 800 Hz, or 8000 Hz) which affects the size of the IML as well as

the size of every level above the IML. The simulated run of Lokahi shows the IML size differences

between the different sampling rates. For one sensor, the IML converges towards 0.5 MB, 3.5 MB,

and 33 MB for each sampling rate after 15 minutes.

130

Figure 4.16: Simulated IML for Lokahi

Evaluation of AML with TTL The AML (Aggregate Measurement Level) collects windowed

features estimated from the IML data. The OPQ network provides two AMLs, Measurements

which are rolled into one second windows and Trends which are rolled into one minute windows.

The Lokahi network provides a single AML (Trends) with windows that vary depending on the

sensor sample rate.

Table 4.13 displays default AML TTL values for the OPQ and Lokahi networks.

Network TTL

OPQ (Measurements) 1 Day

OPQ (Trends) 2 Weeks

Lokahi 2 Weeks

Table 4.13: Default AML TTLs

The minimum bounds of the AML with TTL can be found by using Equation 4.8 and Equa-

tion 4.9 and substituting T for the AML TTL.

Next, I examine the estimated bounds of the AML by looking at the estimated amount of AML

data that is saved by higher levels in the hierarchy.

131

Calculation of the estimated bounds can be found by Equation 4.28.

µSAML TLL = µSAML + µDLAML + µILAML + µPLAML (4.28)

Where µSAML is calculated from Equation 4.9 and T is substituted with the appropriate TTL

for a given AML and µDLAML is the estimated amount of AML data saved by the DL, µILAML

is the estimated amount of AML data saved by the IL, and µPLAML is the estimated amount of

AML data saved by the PL.

Unlike IML data which is copied when a Detection, Incident, or Phenomena is created, AML

data simply has its TTL modified to match the TTL of either the Detection, Incident, or Phenomena

being created. This is true of all other upper levels as well. What this means analytically is that

AML data will live for as long as the highest level that that AML data reached within the Laha

hierarchy. For instance, if a Detection is observed, the AML data will first receive the same TTL

as the Detection. However, if an Incident is later generated from that Detection, then the AML

data will receive TTLs equal to the TTL of the Incident. This must be taken into account so that

AML data is not included multiple times in the calculations.

Since the estimated amount of AML data saved at each level is difficult to calculate directly,

we provide the results from simulating the AML for OPQ and Lokahi.

I had to create a long simulation to observe how data saved by Detections, Incidents, and

Phenomena converge over the course of the largest TTL (2 years). OPQ utilized two different

types of AML data, Measurements and Trends. Each of these AML sub-types have their own TTL

(1 day and 2 weeks respectively) and their own size. This was taken into consideration for the

simulation and we can calculate the AML over both sub-types.

Further, the simulation tracks the amount of data at each level that is “saved” by a higher level.

If data is not “saved” by a higher level then it retains its default TTL and I call it “orphaned data”.

If data is saved by a higher lever, it gains the TTL of the highest level it is saved in and I refer to

the data as “highest level data”. For example, “Orphaned Measurements” refers to Measurements

that have not been saved by a higher level and “Incident Measurements” refer to Measurements

that have been saved by an Incident. I will continue to use these terms to discuss the TTL bounds

for the rest of the TTL evaluation.

Figure 4.17 shows the size of the AML as simulated for the OPQ network over the course of

three years. This figure shows the AML bounds for both Measurements and Trends separately and

shows the bounds of the entire AML in the bottom panel. The figure shows how Measurements

and Trends grow until they hit the TTL they were given. A single simulated device on the OPQ

network converges to near 17 MB for Measurements and 7 MB for Trends giving a total estimated

bounds of near 25 MB.

132

Figure 4.17: Simulated AML for OPQ

Figure 4.18 shows the size of the AML as simulated for the Lokahi network over the course of

three years. The Lokahi network does not have Measurements and only provides for a single AML

sub-type, Trends. The figure shows the AML size for each available Lokahi sampling rate. The

simulated AML for the Lokahi network converges to between 100 MB and 220 MB for a single

sensor.

133

Figure 4.18: Simulated AML for Lokahi

It should be noted that the size difference between sampling rates is not dependent on the

number of samples. In fact, the size of each Trend remains close to constant independent of the

sampling rate. Rather, Trends within Lokahi are produced at different rates depending on the

sampling rate. The Trend rates were chosen to support a power of 2 number of samples for efficient

post processing. Table 4.14 shows the AML Trend rates for Lokahi.

Sensor Sampling Rate Hz Sensor Trend Rate Hz

80 1
51.2

800 1
40.96

8000 1
32.768

Table 4.14: Lokahi AML Rate

Evaluation of DL with TTL The DL (Detections Level) contains metadata and windows of

raw samples that may or may not contain signals of interest. Detections are generated when a

Triggering algorithm notices deviations from nominal within the feature extracted data streams.

134

The term “Event” can also be used for describing a Detection. The default TTL given to Detections

is one month.

The lower bounds of the DL can be found by bounding the level by its TTL and assuming that

no Detections are saved by Incidents or Phenomena. This can be accomplished by substituting T

in Equation 4.15 with the Detection’s TTL (1 month).

The estimated bounds can be found with Equation 4.29 where µSDL can be found by Equa-

tion 4.15, µILDL is the size of the DL saved by the IL, and µPLDL is the size of the DL saved by

the PL.

µSDL TLL = µSDL + µILDL + µPLDL (4.29)

Figure 4.19 shows the simulated DL for OPQ over the course of 3 years. In OPQ Detections

can be orphaned or they can be saved by Incidents. The amount of Orphaned Detections converged

to near 60 MB while the bulk of Detection data is due to Detections being saved by Incidents (a

whopping 700 MB of data) bringing the total DL bounds to near 800 MB.

Figure 4.19: Simulated DL for OPQ

Figure 4.20 shows the simulated DL for Lokahi over the course of 3 years. In Lokahi, Detections

are not saved by Incidents, but rather the creation of an Incident replaces the Detection that the

Incident came from. The consequence of this is that Detections only live for as long as their TTL

and are never assigned a TTL of an Incident.

135

Figure 4.20: Simulated DL for Lokahi

What does affect the size of the DL in Lokahi is the sampling rate. Even if a similar number

of Events are generated, higher sampling rates here will take up more space since the samples are

copied into the Events.

Evaluation of IL with TTL The IL (Incident Level) contains metadata and windows of raw

samples over classified signals of interest. Incidents are created when classification algorithms find

signals of interest in Detection windows. The default TTL of the IL is one year.

The minimum bounds of the IL occur when IL data is strictly bounded by its TTL. This can

be found by substituting T in Equation 4.20 with the IL TTL (1 year).

The estimated bounds can be found with Equation 4.30 where µSIL can be found by Equa-

tion 4.20 and µPLIL is the mean amount of IL data saved by the PL.

µSIL TLL = µSIL + µPLIL (4.30)

Figure 4.21 shows the simulated IL for the OPQ network over the course of 3 years. The IL

converges after 1 year to near 5800 MB for a single simulated OPQ sensor.

136

Figure 4.21: Simulated IL for OPQ

Figure 4.22 shows the simulated IL for the Lokahi network over the course of 3 years. Similar

to the DL, the IL is affected by sensor sampling rate. The figure shows that the IL within the

simulated Lokahi network converges to near 20 MB at 80 Hz, 200 MB at 800 Hz, and 2000 MB at

8000 Hz. The amount of incidents remains stable between sample rates, but the amount of data

differs.

137

Figure 4.22: Simulated IL for Lokahi

Evaluation of PL with TTL The PL (Phenomena Level) contains metadata which provides

actionable insights and context on top of Incidents. Phenomena are generated when patterns (such

as periodicity) are observed in lower levels of the Laha hierarchy. The default TTL for Phenomena

is 2 years.

The minimum bounds on the PL can be found by bounding the PL by its TTL (2 years).

Figure 4.23 shows the simulated growth of the PL for the OPQ network over the course of 3

years.

138

Figure 4.23: Simulated PL for OPQ

Figure 4.24 shows the simulated growth of the PL for the Lokahi network over the course of 3

years for a single sensor.

139

Figure 4.24: Simulated PL for Lokahi

We can observe that the size of the PL within Lokahi is similar between sampling rates. This

is due to the fact that Phenomena within Lokahi are not affected by sampling rate.

Evaluation of Laha with TTL The Laha hierarchy contains the levels IML, AML, DL, IL, and

PL as discussed in the previous sections. This section evaluates the bounds on the entirety of Laha

by looking at all the levels in summation.

Interestingly enough, the minimum bounds of Laha can be found by summing the minimum

bounds of the IML and AML. IML and AML values are always produced, but if no Events, Incidents,

or Phenomena are identified, data will never be saved from IML or AML.

Figure 4.25 shows the simulated Laha bounds for OPQ over the course of 3 years. The figure

shows that Laha for OPQ converges to near 6.5 GB per device after 1 year.

140

Figure 4.25: Simulated Laha for OPQ

Figure 4.26 shows the simulated Laha bounds for OPQ over the course of 3 years. The figure

shows that Laha for Lokahi converges to near 250 MB at 80 Hz, 1000 MB at 800 Hz, and 8 GB at

8000 Hz per device after 1 year.

141

Figure 4.26: Simulated Laha for Lokahi

Comparing Laha with and without TTL Let us first examine OPQ.

Table 4.15 shows three features. The total number of data ran through the simulation at each

level, the total number of data within Laha utilizing TTL, and the delta. As can be observed (and

hopefully expected), we see large estimated data savings when utilizing TTL versus not utilizing

TTL.

Laha Level Without TTL (MB) With TTL (MB) Delta (MB/%)

IML 2239488 35 2239453/-99.99

AML 14097 25 14072/-99.82

DL 3931 750 3181/-80.92

IL 17208 5700 11508/-66.87

PL 1.38 0.80 MB 0.58/-53.51

Total 2274724 6510 2268214/-99.71

Table 4.15: OPQ Laha Comparison

142

The OPQ simulation showed that of all of the Measurements and Trends, about 90.70% of them

were orphaned, 6.33% were saved by Events, 2.97% of them were saved by Incidents, and 0.19%

where saved by Phenomena. Of the Events, about 67.98% were orphaned, about 31.98% were saved

by Incidents and close to 0.04% were saved by Phenomena. Of the Incidents, about 99.9% were

orphaned while about 0.1% were saved by Phenomena.

Let us next examine Lokahi with and without TTL. Table 4.16 shows three features. The total

number of data ran through the simulation at each level, the total number of data within Laha

utilizing TTL, and the delta. It should be noted that this example only looks at Lokahi’s highest

sampling rate of 8000 Hz.

Laha Level Without TTL With TTL Delta (MB/%)

IML 90484 35 90449/-99.96

AML 6987 220 6767/-96.85

DL 180160 5000 175160/-97.22

IL 9326 3000 6362/-67.95

PL 0.94 0.20 0.74/-78.72

Total 286957 8255 278702/-97.12

Table 4.16: Lokahi Laha Comparison

The Lokahi simulation showed that of all the Trends, about 93.21% of them were orphaned,

6.27% of them were saved by an Event, and about 0.26% of them were saved by an Incident and

Phenomena.

In this section, we evaluated the data storage requirements with and without TTL. We showed

significant data savings when using TTL as compared to when TTL was not used. Parameters for

these evaluations were found both by the physical properties of the sensors as well as the rate at

which data is moved between Laha levels.

4.4 Evaluation of Tertiary Goals

In order to achieve the main goals of this framework, I claim that either all or a subset of the

following tertiary goals must be fulfilled as discussed in Section 1.5.4: optimization of triggering,

detection, classification, sensor energy usage, bandwidth, predictive analytics, and the ability to

derive models of the underlying sensing field topology.

To evaluate these tertiary goals, I selected and implemented DSN optimization techniques from

current literature. I then compared and contrasted the usefulness of different techniques and discuss

how each of these techniques perform in the different sensor domains.

143

Finally, I discuss how each of these tertiary goals make progress towards overall goals of this

sensor network. Results of these evaluations are provided in Section 5.5.

4.4.1 Evaluation of Adaptive Optimizations for Triggering

Triggering is the act of observing a feature extracted data stream for interesting features and trig-

gering sensors to provide raw data for a requested time window for higher level analysis. Adaptively

optimizing triggering is a way to tune triggering algorithms and parameters with the aim of de-

creasing false positives and false negatives. In this context, a false positive is triggering on a data

stream that does not contain a signal of interest and a false negative is not triggering on a data

stream that does contain a signal of interest.

Adaptive triggering is only useful in networks that utilize triggering. Specifically, this technique

can not be applied to DSNs that take a collect everything all the time approach.

Triggering can also have significant impacts on overall sensor power requirements and DSN

bandwidth requirements. Many of the optimizing triggering algorithms present in the literature

exist to minimize sensor energy requirements and bandwidth requirements. This is addressed

in great detail in the literature review by Anastasi et al [4]. This is accomplished by reducing

communications between sensor nodes and the sink. It is argued in [52] that the cost of transmitting

a single bit of information from a sensor cost approximately the same as running 1000 operations

on that sensor now. However, there is some contention on this topic as [2] argues that in some

modern sensors computational requirements can equal or eclipse those of sensor communication.

Even if a DSN utilizes triggering, it is not clear that adaptive triggering even takes place.

The first question I evaluated is, does adaptive optimization of triggering take place at all given

the domain of the DSN? That is, does the nature of the underlying sensor field contribute to

optimization of triggering? I compared if and how optimizations take place in the two reference

networks for the domains of PQ and infrasound.

In order to evaluate triggering efficiency within our Laha deployments, Laha only adaptively

modifies triggering for half of the devices in the OPQ deployment. In the Lokahi deployment, I

ran the same experiment twice. The first run did not optimize triggering and the second run did

optimize triggering.

Once the experiments were run, I first determined if optimization of triggering has occurred,

and if it did, compared the number of false negatives and false positives against the runs that did

not use optimized triggering or where optimization did not occur.

In the results chapter (Chapter 5), I will show that a side effect of Laha’s optimized triggering is

reduced bandwidth and sensor energy requirements. To this end, I calculated metrics for total data

sent and received at the sink node of each network for each device in the network. A positive result

would show decreased bandwidth usage for devices that utilize optimized triggering. A negative

result would show similar or more bandwidth usage for devices that utilize optimized triggering.

144

Results will further show that another benefit of Laha’s optimized triggering is reduced sensor

energy requirements. The evaluation for this metric occurred with the Lokahi network where

sensors can be dependent on batteries. I ran two experiments. For each experiment, all sensors

were charged to battery level of 100%. In the first experiment, I did not utilize optimized triggering.

In the second experiment I did utilize optimized triggering. In both experiments, I measured the

final battery level after the experiment and also measure how quickly the battery depletes for each

sensor. This is possible because data in the Lokahi network contains timestamped entries with

battery levels.

Results of adaptive optimizations for triggering can be found in Section 5.5.1.

4.4.2 Evaluation of Adaptive Optimizations for Detection and Classifications

Detections occur when triggering observes something “interesting” in the feature extracted data

stream. A Detection is a contiguous window of raw sensor data that was requested by triggering

that may or may not contain signals of interest. Optimizing detections involves optimized the

window sizes to increase the signal-to-noise ratio of the window. Fine grained features are then

computed by Detection Actors and moved to the Incidents Level where classification of signals

takes place. Optimizing Detections involves trimming detection windows to increase signal-to-

noise. Optimizing of classifications for Incidents involves tuning parameter sets for the underlying

classification algorithms.

Predictive and Locality Phenomena as well as topology optimizations were used to provide

optimizations to the Detections and Incidents levels.

Evaluation of adaptive optimizations for detection and classification within the Laha network

were conducted differently for each Laha deployment.

In the Lokahi deployment, I controlled the production of infrasound signals using the available

infrasound source. I ran two experiments, where the amplitudes and frequencies of the signals are

the same and the locations of the devices remain invariant. In the first experiment, Laha did not

use optimized detection or classification provided by Phenomena. In the second experiment, Laha

did use optimized detection and classification techniques provided by Phenomena.

With known frequencies and amplitudes of the infrasound signals, I can compare the rate of

detections and classifications between the optimized and unoptimized experimental runs. I expect

to see a greater number of and more accurate detections and classifications from the optimized

experiment.

In the OPQ deployment, I compared the same metrics as the Lokahi deployment, but instead of

controlling the source signal, I co-located OPQ Boxes with industry standard meters. In each pair

of co-located OPQ Boxes, one was analyzed using Phenomena optimized detection and classification

algorithms and the other was analyzed using unoptimized detection and classification algorithms.

I collected and evaluated the number of false positives and false negatives for Incidents generated

145

with optimization and without optimization. A positive outcome would include a decrease in either

false positives, false negatives, or both. A negative result would be an increase in either or both

false positives or false negatives.

I also calculated the signal-to-noise ratio in Detections to determine if optimization of detections

is working. A positive outcome is an increase in the signal-to-noise ration and a negative outcome

would be similar or a decrease in signal-to-noise ratio.

Results of adaptive optimizations for detection are provided in Section 5.5.2.

4.4.3 Evaluation of Model of Underlying Sensor Field Topology

Laha should be able to build a model of the underlying sensing field topology. This is not the

topology of the physical layout of the sensors (this is generally already known a priori or by

collecting location information), but rather the topology by which signals travel. For example, in

a PQ network the topology is the physical power grid and switches that PQ signals travel through.

In an infrasound network, the topology is the atmosphere through which sound waves travel. Laha

aims to build a statistical model of the distances between sensors according to the topology of

the sensing field by observing recurrent incidents over time. This can perhaps shed some light on

understanding the topology of a sensing field without knowing anything about it before hand.

Much of the literature on topology management is written to decrease sensor energy require-

ments by exploiting the density of sensors within a sensing field topology. For example, the

ASCENT[8] framework provides adaptive self configuring sensors that exploit topology denseness

to decrease sensor energy usage. Several other frameworks have been designed with the same goal

of reducing energy usage by exploiting topology[61, 60].

To evaluate the model of the sensing field topology, I took two different approaches for each

Laha deployment. In both deployment, the sensing field topology is known beforehand to provide

a ground truth. I then compared Laha’s computed signal distance between sensors to the actual

signal distance between sensors as provided by the ground truths.

In the Lokahi deployment, sensors were strategically placed at different distances from an infra-

sound source. Some sensors were close to each other geographically, but separated by terrain that

infrasound signals could not easily travel through. By moving the infrasound source, I can expect to

see infrasound signals arriving or not arriving at the sensors depending on the source and direction

of the signal along with the physical features of the land. By performing multiple experiments, I

provided a model of the physical environment topology that Laha has built. I compared Laha’s

model to the known topology and provide a statistical error analysis.

In the OPQ deployment, sensors were strategically placed on electrical lines to observe how

distributed PQ signals move through a power grid. In this deployment, Laha built a topology

model that does not show physical geographic distance between sensors, but instead built a model

of the electrical distance between sensors. This data was evaluated by comparing the electrical

146

distances found by the Laha model to the actual UH power grid as referenced by the schematic

provided by the Office of Energy Management at UH Manoa. A statistical error analysis of the

differences between electrical distances between the model and the schematic is provided as an

evaluation metric.

A positive outcome would be to show that there is high correlation between the Laha signal

distances and the ground truth distances. A negative outcome would show low correlation.

Assuming high correlation and a statistical model of the sensing field, I evaluated if Laha is

able to use this information to optimize triggering, classification, or predictive analytics. In order

to evaluate this, I collected the number of false positives and false negatives at all levels in the Laha

hierarchy while optimizing from topology and without optimizing from topology. I expect to see

less false positives and less false negatives when utilizing topology optimizations. A negative result

would be a larger number of false positives or false negatives.

I expect to only see results in networks where signals travel fast enough to create a statistical

difference between arrival times at the various sensors. In sensing fields where signals travel slowly

and uniformly (i.e. a temperature collection DSN), it may be more difficult or impossible to actually

determine the sensing field topology.

Results of the underlying sensing field topology are provided in Section 5.5.3.

147

CHAPTER 5
RESULTS

5.1 Results of Validating Data Collected by Deployments

Ground truth analysis compares data collected by the OPQ and Lokahi networks to data that

is assumed to be correct. The collected data is compared to the ground truth data in order

to determine how similar it is to the “correct” data. The requirement to perform ground truth

analysis was provided in Section 1.6. The analysis performed in the next sections utilized the

evaluation method from Section 4.2 in an attempt to provide evidence that the Lokahi and OPQ

networks collect data that is as close to correct as possible and provides discussions on when and

why this data does not always exactly match the ground truth data.

5.1.1 Ground Truth Analysis: OPQ

The UHM Office of Energy Management provided our team with access to data collected by high

quality power meters installed at the mains of selected campus buildings. This data set provides the

basis of the ground truth data that I compare to OPQ using the evaluation outlined in Section 4.2.1.

Ground truth data was scraped from an UHM internal server over the duration of the OPQ

deployment. I collected ground truth data containing 15 features for each of the ground truth

meters that are co-located with an OPQ Box. The ground truth data is mostly complete, however,

there are a few missing features for some meters.

The provided ground truth data is similar to OPQ Trends in that it provides rolled up summary

statistics for features over a window of 60 seconds. The included statistics include the actual,

minimum, maximum, average, and standard deviation of the features measured. Unfortunately,

the ground truth data does not provide a count of how many Measurements were rolled into their

one minute window. Because of this, I do not know the window sized used when computing things

such as frequency or THD.

I collected the following available features for ground truth data: “Frequency”, “Average Voltage

THD”, “VAB”, “VAN”, “VBC”, “VBN”, “VCA”, “VCN”, “Voltage CN THD”, “Voltage AN

THD”, “Voltage BN THD”, and “Voltage CN THD”.

The frequency and THD Measurements are in units that are similar to what OPQ collects

(frequency @ 60Hz and % THD), but the voltage values are in RMS at 420V and 240V where OPQ

collects RMS at 120V. This means that the voltage values can not be compared directly and that

we either need to scale the voltage values or use straight thresholds for determining Events and

Incidents. Further, the ground truth values for voltage are provided for each of the three voltage

phases whereas OPQ Boxes compute RMS voltage from a combination of three phases. This needs

to be considered before comparing ground truth voltage to OPQ voltage Measurements.

148

Although the frequency and THD ground truth Measurements are scaled the same as OPQ

observations, it is not clear what size of computation window the ground truth sensors utilize to

make these calculations. I expect to see slight differences between what Mauka observed and what

the UHM meters observed due to these differences.

To complicate things, we do not have a UHM meter co-located with every OPQ Box and

several of our Boxes are co-located with multiple UHM meters making the determination of which

combination of Box and Meter to compare not straight forward.

Finally, it should be noted that due to OPQ’s default TTL values, Measurements are only stored

for a day and Trends are only stored for two weeks. This means that we can not compare the ground

truth Trends directly (unless they were saved by an Event, Incident, or Phenomena) for more than

a period of 2 weeks. This only affects comparing ground truth data to OPQ Measurements and

Trends and should not affect the comparison of Events and Incidents.

Table 5.1 provides a mapping from OPQ Boxes to co-located UHM meters.

149

OPQ Boxes UHM Ground Truth Sensors

1000, 1002 (POST) POST MAIN 1

POST MAIN 2

1001 (Hamilton) HAMILTON LIB PH III CH 1 MTR

HAMILTON LIB PH III CH 2 MTR

HAMILTON LIB PH III CH 3 MTR

HAMILTON LIB PH III MAIN 1 MTR

HAMILTON LIB PH III MAIN 2 MTR

HAMILTON LIB PH III MCC AC1 MTR

HAMILTON LIB PH III MCC AC2 MTR

1003 (Keller) KELLER HALL MAIN MTR

1005 (Parking Structure Ph. II) N/A

1006 (Frog I) N/A

1007 (Frog II) N/A

1008 (Mile’s Office) N/A

1009 (Watanabe) N/A

1010 (Holmes) N/A

1021 (MSB) MARINE SCIENCE MAIN A MTR

MARINE SCIENCE MAIN B MTR

MARINE SCIENCE MCC MTR

1022 (Ag. Engineering) AG ENGINEERING MAIN MTR

AG ENGINEERING MCC MTR

1023 (Law Library) LAW LIB MAIN MTR

1024 (IT Building) N/A

1025 (Kennedy Theater) KENNEDY THEATRE MAIN MTR

Table 5.1: OPQ Boxes Co-Located with UHM Ground Truth Sensors

As can be observed, several OPQ Boxes do not have a co-located UHM sensor and several OPQ

Boxes are co-located with multiple UHM sensors.

Frequency Measurement and Trend Ground Truth Analysis

Measurements and Trends are both computed on-board OPQ Boxes using the same algorithms.

Since Trends live longer than Measurements, we will perform these comparisons using Trends only

for frequency, THD, and voltage. A comparison directly to Measurements would yield similar

results since Trends are computed directly from the Measurements.

Frequency Trends can be compared one-to-one with the UH ground truth meters using the

150

“Frequency” feature provided by ground truth sensors. In the following Figures, I compare the

observed OPQ frequencies to the observed co-located UHM meter frequencies.

For each frequency comparison, I aligned the two series by minute and then subtracted two weeks

of OPQ observed frequencies from the UHM observed frequencies. I then plotted the differences

as a histogram and finally model a best fit of a Normal Distribution on top of the histogram. This

approach is also used when comparing against voltage and THD Trends.

As an example, Figure 5.1 shows the frequency observed by OPQ Box 1000 in POST compared

to the UHM POST MAIN 1 meter.

Figure 5.1: Frequency OPQ Box 1000 vs POST MAIN 1

The rest of the frequency comparisons look very similar and the results are summarized in

Table 5.2.

151

OPQ Box UHM Ground Truth Sensor µ σ

1000 POST MAIN 1 -0.0018 0.0079

1000 POST MAIN 2 -0.0017 0.0079

1001 HAMILTON..CH 1 -0.0007 0.0074

1001 HAMILTON..CH 2 -0.0010 0.0074

1001 HAMILTON..CH 3 -0.0012 0.0074

1001 HAMILTON..MAIN 1 -0.0013 0.0074

1001 HAMILTON..MAIN 2 -0.0011 0.0074

1001 HAMILTON..MCC AC2 -0.0009 0.0074

1002 POST MAIN 1 -0.0018 0.0069

1002 POST MAIN 2 -0.0017 0.0069

1003 KELLER HALL MAIN -0.0006 0.0073

1021 MARINE SCIENCE MAIN A -0.0010 0.0081

1021 MARINE SCIENCE MAIN B -0.0006 0.0081

1021 MARINE SCIENCE MCC 0.0003 0.0081

1022 AG ENGINEERING MAIN -0.0020 0.0078

1022 AG ENGINEERING MCC -0.0018 0.0078

1023 LAW LIB MAIN -0.0005 0.0078

1025 KENNEDY THEATRE MAIN -0.0013 0.0087

Table 5.2: Frequency Trend Comparisons

As can be observed, the OPQ Boxes that we have co-located with UHM ground sensors track

the frequency quite accurately. In general we rarely see differences outside of 0.02 Hz and most

sensors show a mean difference on the order of a mHz. These results are expected as grid stability

relies heavily on the frequency. Further, frequency is generally affected at global scales rather than

local scales, so we expect all UHM meters and OPQ Boxes to observe similar frequency trends

across the UHM micro-grid.

Voltage Ground Truth Analysis

OPQ Boxes measure RMS voltage as a combination of three voltage phases at 120 Volts. UHM

ground truth meters measure RMS voltage for each individual phase at different voltages (480, 240,

and 270). Because of these differences, the voltages can not be compared directly and can only be

performed for a small subset of our Boxes due to available ground truth data (those that contain

voltage channels for “AB”, “BC”, and “CA”).

In order to compare OPQ Box voltages against UHM voltages, a combination of voltage values

must exist within the ground truth data for each sensor with the following configurations: voltage

152

from phase A to phase B, voltage from phase B to phase C, and voltage from phase C to phase

A. If these metrics exist, then the RMS value for the ground truth can be found by Equation 5.1

as described by Horowitz[25] where VAB, VBC , and VCA provide the inter-phase voltages reported

by the UHM meters and C is a constant dependent on the transformer configuration and the final

step down voltage. C was empirically found to be 3.9985 for our data sets.

VRMS =
1√
3C

√
V 2
AB + V 2

BC + V 2
CA (5.1)

As an example, Figure 5.2 provides the difference in VRMS between OPQ Box 1000 and the

UHM POST MAIN 1 meter.

Figure 5.2: Voltage OPQ Box 1000 vs POST MAIN 1

Box 1000 averages about .9V higher than what is observed at the ground truth meter.

Some of the difference comparisons display multiple distributions which might be explained by

the cycling of voltage conditioning equipment and by larger loads on the grid during day time

hours. However, I do not have enough information about the UH micro-grid detailed operations to

be completely certain about these claims.

153

For example, Figure 5.3 compares Box 1001 in POST to the POST MAIN 1 meter.

Figure 5.3: Voltage OPQ Box 1002 vs POST MAIN 1

The green Gaussian fit shows voltages collected during night time hours where the orange

Gaussian fit shows values collected during the day time hours. It is interesting that Box 1000 and

Box 1002 show such different results even though the Boxes are located on the same floor within

the same building. The Boxes are however opposite each other within the building. I suspect that

these Boxes are serviced by different electrical mains within the building. These claims are further

supported by THD ground truth analysis in the following section which contains THD data for

each electrical main.

Even more interesting is that several of our voltage comparisons show three separate Gaus-

sian distributions. As example, Figure 5.4 compares voltage values between Box 1021 and the

MARINE SCIENCE MAIN A MTR.

154

Figure 5.4: Voltage OPQ Box 1021 vs MARINE SCIENCE MAIN A MTR

Here we can see that most of our values average about 1V higher than that of the ground truth

with other peaks at 0.3V and 1.4V above the ground truth data.

Table 5.3 summarizes the voltage comparisons.

155

OPQ Box UHM Ground Truth Sensor µ σ

1000 POST MAIN 1 -0.9040 0.1077

1001 HAMILTON..CH 1 -2.8192 -2.1797 -1.5725 0.2291 0.1516 0.2321

1001 HAMILTON..CH 2 -3.0246 -2.3877 -1.7756 0.2310 0.1514 0.2285

1001 HAMILTON..CH 3 -2.6499 -2.0276 -1.4360 0.2426 0.1419 0.2255

1001 HAMILTON..MAIN 1 -2.5372 -1.9135 -1.3196 0.2346 0.1396 0.2361

1001 HAMILTON..MAIN 2 -2.3670 -1.7215 -1.1026 0.2392 0.1519 0.2132

1001 HAMILTON..MCC AC1 -2.7611 -2.0735 -1.4276 0.2242 0.1886 0.2092

1001 HAMILTON..MCC AC2 -2.6994 -2.0377 -1.4231 0.2413 0.1674 0.2115

1002 POST MAIN 1 -2.8143 -1.7634 0.1113 0.1041

1021 MARINE SCIENCE MAIN A -1.4293 -1.0043 -0.3454 0.0849 0.1406 0.1802

1021 MARINE SCIENCE MAIN B 0.9882 1.4071 2.0456 0.0720 0.1312 0.2049

1021 MARINE SCIENCE MCC -1.6304 -1.2121 -0.5738 0.0887 0.1300 0.1894

1022 AG ENGINEERING MAIN 0.0947 0.1704

1022 AG ENGINEERING MCC 0.0482 0.1703

1023 LAW LIB MAIN 0.6286 0.1841

Table 5.3: Voltage Trend Comparisons

The POST (1000), MSB, Ag. Engineering, and Law Library buildings provide the most accurate

comparisons to ground truth with average differences between .5V and 1V.

Hamilton Library is a major outlier in that the ground truth comparisons are generally off

by around 1.5 to 2.5 Volts. Hamilton Library is fed by three electrical mains each with multiple

channels. Ground truth data is only collected on Hamilton Ph III. I suspect that our Box in

Hamilton is serviced by one of the other phases. This claim is further supported by the THD

comparison in the next section.

THD Ground Truth Analysis

Total Harmonic Distortion (THD) is collected by both OPQ Boxes and UHM ground truth sensors.

The feature that was used to make THD comparisons is the AVERAGE VOLTAGE THD from the

ground truth data. Similar to the frequency comparison, I subtracted the OPQ THD observations

from the UHM THD observations and created histograms of the differences. I also attempted to fit

the data with a Normal Distribution, but had less success than with the frequency. This is due to

the fact that several of the distribution do not follow a Gaussian, but instead present two separate

Gaussian distributions.

The multiple distributions appear to be related to time of day and point towards either power

conditioning equipment cycling on and off or an increased electrical load causing higher amounts

156

of THD during the day (or perhaps both). When there are multiple THD distributions, the distri-

bution throughout the night time hours is more accurate than the distribution created during day

time hours.

Figure 5.5 compares THD between the Pacific Ocean Science and Technology building (POST)

OPQ Boxes and POST UHM sensors.

(a) 1000 vs. POST MAIN 1 (b) 1000 vs. POST MAIN 2

(c) 1002 vs. POST MAIN 1 (d) 1002 vs. POST MAIN 2

Figure 5.5: UHM THD vs. OPQ THD (POST)

The THD comparisons within the POST building provides several interesting features to discuss.

First, POST has two ground truth meters (POST MAIN 1 and POST MAIN 2) and two OPQ

Boxes (1000 in the Collaborative Software Development Lab (CSDL) and 1002 in ICSpace). Both

157

OPQ Boxes are on the third floor, roughly opposite each other in the building. As mentioned

previously, I do not know exactly which electrical subsystem each OPQ Box is on when there are

multiple electrical mains servicing a single building. In the case of POST, there are two electrical

mains. I believe it is possible to guess which OPQ Box corresponds with which main by looking at

the ground truth comparisons.

For instance, OPQ Box 1000 vs. POST MAIN 2 provides a much smaller spread in THD

difference (about .25% THD) than OPQ Box 1000 vs. POST MAIN 2 which has a spread of close

to 1% THD. I speculate that OPQ Box 1000 is on the same main as the POST MAIN 2 meter.

The opposite holds true for OPQ Box 1002. The spread for Box 1002 is smaller for POST MAIN 1

(about 0.3% THD) than it is for POST MAIN 2 (about 0.6% THD) which leads me to speculate

that Box 1002 may be serviced by the same electrical main as the POST MAIN 1 meter. These

assumptions fit with assumptions made about the voltage comparisons in the previous sections

providing credence to the idea that 1000 and 1002 are serviced by separate mains with POST.

Table 5.4 summarizes the best Gaussian fit for THD comparisons between OPQ Boxes and

available ground truth data.

OPQ Box UHM Ground Truth Sensor µ σ

1000 POST MAIN 1 -0.5759 -0.1327 0.0556 0.0928
1000 POST MAIN 2 0.0123 0.1200 0.0270 0.0320
1001 HAMILTON..CH 1 1.4245 0.4121
1001 HAMILTON..CH 2 1.4327 0.4114
1001 HAMILTON..CH 3 1.3943 0.4153
1001 HAMILTON..MAIN 1 1.4314 0.4072
1001 HAMILTON..MAIN 2 0.9872 1.6370 0.1339 0.3078
1001 HAMILTON..MCC AC1 1.4338 0.4132
1001 HAMILTON..MCC AC2 1.4441 0.4133
1002 POST MAIN 1 0.0888 0.2154 0.0367 0.0415
1002 POST MAIN 2 0.3875 0.6652 0.0655 0.0796
1021 MARINE SCIENCE MAIN A -0.6964 0.1156
1021 MARINE SCIENCE MAIN B 0.3098 0.5649 0.0725 0.0601
1021 MARINE SCIENCE MCC -0.6938 0.1160
1022 AG ENGINEERING MAIN 0.5406 0.0421
1022 AG ENGINEERING MCC 0.4993 0.0433

Table 5.4: THD Trend Comparisons

All comparisons (except for those at Hamilton Library) show average differences of around .5%

THD. Similar to what was discussed in the previous section comparing voltage values, Hamilton

remains the single outlier in our data set. Here, I observed upwards of 1.5% THD difference across

Hamilton based meters. This continues to lead me to believe that the OPQ Box in Hamilton is

serviced by a different main that that of the HAMILTON PH III ground truth meters.

158

To summarize the comparison of OPQ Measurements and Trends to ground truth data, I showed

that co-located OPQ Boxes and UHM ground truth meters trend quite closely together (except

for at Hamilton Library) for low level metrics. Frequency is the most accurate metric, followed by

THD and voltage. I would have liked to have seen smaller differences and tighter bounds on the

voltage and THD comparisons, but differences of .5% THD and .5V are still acceptable. I also wish

I had a more concrete explanation for the multiple Gaussian distributions present in the THD and

voltage comparisons.

Mauka Event Ground Truth Analysis

Events contain metadata and a window of raw data that may or may not contain signals of interest.

Events are produced in OPQ by two components. Mauka’s threshold based Event detector and

Napali’s statistical based Event detector. This section focuses on Mauka’s threshold based Event

detection methods as the Napali Event Trigger is the focus of another Ph.D. dissertation in our

research group.

Events generated by Mauka do not store information about which metric was used to generate

that Event (frequency, voltage, or THD). When Mauka’s Event detector was implemented, this

seemed reasonable as Events are not supposed to make any type of assumption about what is

non-nominal about the data, only that something non-nominal was observed.

Future implementations of the Mauka Event detector should store extra metadata about which

metric was used to create an Event. This metric would be useful when comparing Events generated

by Mauka to ground truth data using thresholding analysis.

In order to compare Mauka Events to ground truth data, I applied similar thresholds to those

used by Mauka’s Event detector to the ground truth data. The thresholds that were applied are

±.16% nominal frequency, ±2.5% nominal voltage, and +3% THD. I then normalized the ground

truth data by centering each feature’s thresholds at zero and then counted the number of zero

crossings for each feature and threshold for that feature.

Because the ground truth data is averaged over a minute window, I bin all Events by minute

windows as well and only count windows that contain Events. I then compared the number of

Events found by thresholding the ground truth data to the binned Events observed by Mauka. The

results are shown in Table 5.5.

To perform this comparison, I required all three major features used by Mauka’s Event genera-

tor, frequency (“Frequency”), voltage (“VAB”, “VBC”, and “VCA”), and THD (AVERAGE VOLTAGE THD).

Ground truth data with all required features only provides co-located UHM sensors for OPQ Boxes

1000, 1001, 1002, 1021, and 1022.

Boxes 1000, 1001, and 1022 provide the best comparisons to ground truth. Mauka observes

about 63% of the ground truth Events for Box 1000 and 78% for Box 1001. Mauka observed about

30% more Events for Box 1022 as compared to ground truth data.

159

OPQ Box UHM Ground Truth Sensor OPQ Events Ground Truth Events

1000 POST MAIN 1 580 928
1001 HAMILTON LIB..CH 1 291 394
1001 HAMILTON LIB..CH 2 291 380
1001 HAMILTON LIB..CH 3 291 371
1001 HAMILTON LIB..MAIN 1 291 375
1001 HAMILTON LIB..MAIN 2 291 615
1001 HAMILTON LIB..MCC AC2 291 375
1002 POST MAIN 1 2678 928
1021 MARINE SCIENCE MAIN A 3613 379
1021 MARINE SCIENCE MAIN B 3613 821
1021 MARINE SCIENCE MCC 3613 391
1022 AG ENGINEERING MAIN 1605 929
1022 AG ENGINEERING MCC 1605 1138

Table 5.5: Events Comparisons

Boxes 1002 and 1021 show fairly anomalous results compared to the ground truth.

One useful observation is that the main force driving Event generation within Mauka is THD

Events. THD thresholds were set at 3% for Event generation. Most ground truth data shows that

80% of all Events generated are likely caused by crossing the THD thresholds with close to 18%

being caused by voltage threshold crossings. Only a very small percentage of Events generated

were generated by frequency threshold crossings. This means that observed differences in THD

and voltage readings between OPQ Boxes and ground truth sensors explain the differences that

can be observed between ground truth data and OPQ Boxes.

For example, let us examine Box 1021 as a case study which observed 3,613 Events while

ground truth only observed 391 Events. Figure 5.6 shows the ground truth data for the MA-

RINE SCIENCE MCC MTR sensor.

160

Figure 5.6: Ground Truth MARINE SCIENCE MCC MTR

From the previous section, we saw Box 1021 observed THD that averages 0.7% higher than

what the ground truth observed. Adding the .7% THD difference to the ground truth shown above

pushes the THD just over threshold and causes Box 1021 to produce many more Events than what

was observed by ground truth initially. These results are provided in Figure 5.7.

161

Figure 5.7: Ground Truth Adjusted THD MARINE SCIENCE MCC MTR

Adding the average .7% to the ground truth data increased the number of observed ground

truth THD Events from 391 to 1252 bringing the total ground truth Events to 1562.

Perhaps the THD threshold is a bit too aggressive for Event generation and future work should

look at relaxing this threshold a bit and observe how that affects the results.

The results for Box 1002 can also be explained using similar methodology. Figure 5.8 shows

the ground truth readings at POST MAIN 1.

162

Figure 5.8: Ground Truth POST MAIN 1

This time, THD is not the cause of the large difference in the comparison. Instead, it is the

voltage readings. Box 1002 reads on average 1.7 Volts higher than what is reported by ground

truth. Figure 5.9 shows the ground truth data adjusted to be 1.7 Volts higher.

163

Figure 5.9: Ground Truth Voltage Adjusted POST MAIN 1

Here, we can observe that the voltage values are often passing the high voltage threshold. This

increases the number of voltage Events from 34 to 1141 bringing the total observed ground truth

Events to 2035 or 643 Events less than what OPQ Box 1002 observed.

What these results show is that the ground truth comparisons are largely affected by observed

readings of THD and voltage values by OPQ Boxes. These results also show that OPQ Boxes that

produce large numbers of Events are caused by readings that hover near the feature thresholds that

are utilized for Event creation.

The results from Event ground truth comparison are encouraging. The results show that al-

though we may not be reading exactly what the ground truth sensors are reading, when adjusted

for differences in low level metrics, expected Mauka Events match that of the ground truth data.

The next section will compare Mauka Incidents to ground truth data.

Mauka Incident Ground Truth Analysis

The OPQ ground truth data does not contain concepts that are related to Laha Incidents. In fact,

the further we get away from the metrics that the ground truth provides (rolled-up one minute

summaries), the harder it is to compare to higher levels in the Mauka hierarchy.

Instead, I apply thresholding to the ground truth data to determine where Incidents should

have been observed verses when they were actually observed by Mauka. To complicate the matter,

the OPQ ground truth data only provides features at a granularity of one minute. Therefore, I

164

bin each individual Incident by minute and only count the number of bins that contain Incidents,

similar to what was done for Events.

Using thresholding breaks down for many of the Incident types that rely on the duration of a

disturbance to apply a classification (which is almost all of them). For instance, all IEEE defined

PQ classifications rely on accurate durations of anomalous signals to apply a classification. This

also holds true for Incidents that utilize industry standards such as ITIC or Semi-F47. These

Incident types can not be compared to the ground truth data directly since ground truth data does

not provide any notion of duration and only averages values over a one minute time window which

is much too large for almost all of Mauka’s Incident classifications. The best I can do for comparing

Incidents is attempting to ensure that the threshold bounds make sense.

Incidents were compared using one month of data from December 1 to December 30.

Voltage Incidents Comparison Voltage Incidents include voltage sags, swells and interruptions

as well as Semi-F47 and ITIC classifications. All voltage Incidents rely on the duration of the

Incident in order to provide an accurate classification. Duration information is not provided by

ground truth data. Instead, I use thresholding to determine where OPQ Incidents might have been

observed. It is important to note here that Incidents observed by the ground truth data may not

meet the duration thresholds to be classified by OPQ. I attempt to motivate this point using data

from Events.

Table 5.6 summarizes the results for the voltage Incidents comparisons. Please note the abbre-

viations in the table where “O.” stands for an OPQ Box and “U.” stands for a UHM sensor.

165

OPQ Box UHM Ground Truth Sensor O.Sags O.Swells U.Sags U.Swells

1000 POST MAIN 1 0 0 2 108

1000 POST MAIN 2 0 0 2 346

1001 HAMILTON LIB..CH 1 34 0 90 8

1001 HAMILTON LIB..CH 2 34 0 104 2

1001 HAMILTON LIB..CH 3 34 0 82 10

1001 HAMILTON LIB..MAIN 1 34 0 80 12

1001 HAMILTON LIB..MAIN 2 34 0 38 18

1001 HAMILTON LIB..MAIN AC1 34 0 90 12

1001 HAMILTON LIB..MAIN AC2 34 0 84 10

1002 POST MAIN 1 2 0 2 108

1002 POST MAIN 2 2 0 2 346

1021 MARINE SCIENCE MAIN A 8 0 296 0

1021 MARINE SCIENCE MAIN B 8 0 2 62

1021 MARINE SCIENCE MCC 8 0 664 0

1022 AG ENGINEERING MAIN 8 0 48 10

1022 AG ENGINEERING MCC 8 0 52 10

1023 LAW LIB MAIN 0 0 30 10

Table 5.6: Voltage Incidents Comparisons

There are a couple of things to note here. Mauka did observe 8 voltage swells over this time

period, all for Box 1008. However, we do not have ground truth data for this location and Mauka

did not observe any other voltage swells with co-located ground truth sensors.

All counts for OPQ are less than the counts shown by the OPQ ground truth data. This is

important because the ground truth data does not provide any metric for swell or sag duration.

This means that some percentage of the ground truth sags and swells durations are less than what

is required to classify the data as an Incident by OPQ Mauka.

One of the reasons Mauka likely did not classify many voltage swells is because they are much

less common in general. Further, according to Power Standards Lab[53], voltage swells tend to be

much smaller in duration compared to voltage sags. This is due to the fact that voltage swells are

almost always caused by an abrupt decrease in load on the grid followed by rapid stabilization.

Voltage sags on the other hand are caused by an increased load on the grid and last for as long as

that load continues to persist. It is likely the voltage spikes observed by the UHM sensors did not

last long enough in duration to be classified as Mauka Incidents, however without more detailed

ground truth data, this is only a hypothesis.

166

THD Incidents Comparison I compared THD observed by the UHM ground truth meters to

THD observed by OPQ Boxes.

The OPQ Box computes THD over a window of six cycles. The window size that the UHM

ground truth sensors utilize for THD calculations is unknown. Because the Mauka THD plugin

computes THD per electrical cycle, I expect the THD generated by Mauka to be slightly higher

than that of the OPQ Box Measurements or Trends which compute THD over a larger window.

This is caused by using a smaller THD computation window which has less of a chance to average

out noise. On one hand, this provides THD per cycle which better exemplifies small transients in

the data which would otherwise be averaged out using larger window lengths. On the other hand,

measured THD will be higher due to added noise in the signal.

I empirically found that THD values calculated by Mauka add .5% THD to the OPQ Box and

UHM ground truth Measurements. This added THD is due to added noise in the THD calculation

caused by using a smaller window. Ground truth data had this constant added before comparing

to THD Incidents produced by Mauka. Table 5.7 summarizes the results of the THD Incidents

comparison.

OPQ Box UHM Ground Truth Sensor OPQ THD UHM THD

1000 POST MAIN 1 3 0

1000 POST MAIN 2 3 0

1001 HAMILTON LIB PH III CH 1 MTR 41 456

1001 HAMILTON LIB PH III CH 2 MTR 41 464

1001 HAMILTON LIB PH III CH 3 MTR 41 281

1001 HAMILTON LIB PH III MAIN 1 MTR 41 491

1001 HAMILTON LIB PH III MAIN 2 MTR 41 465

1001 HAMILTON LIB PH III MCC AC1 MTR 41 456

1001 HAMILTON LIB PH III MCC AC2 MTR 41 443

1002 POST MAIN 1 3 0

1002 POST MAIN 2 3 0

1021 MARINE SCIENCE MAIN A MTR 59 0

1021 MARINE SCIENCE MAIN B MTR 59 481

1021 MARINE SCIENCE MCC MTR 59 0

1022 AG ENGINEERING MAIN MTR 21 111

1022 AG ENGINEERING MCC MTR 21 61

Table 5.7: THD Incidents Comparisons

These results are not surprising. Similar to the voltage Incidents, we observe that OPQ Boxes

track less THD Incidents than the UHM ground truth meters. This is to be expected due to the

167

fact that the Incidents are only classified when signals are non-nominal for specified durations.

It is likely (yet unknown due to lack of detailed ground truth data) that the extraneous THD

Incidents that were observed by the ground truth sensors did not meet the duration requirements

for classification.

Boxes 1000 and 1002 provide the only surprising results in that the THD Incidents observed

by Mauka were not observed by the UHM ground truth sensors. The Incidents correspond to high

peaks in THD at those locations, but the peaks do not cross the THD threshold of 5%. Since these

Incidents correspond with peaks in the ground truth data, it is possible that the smaller THD

computation window and added noise created these false positives.

Frequency Incidents Comparison Frequency Incidents are classified as either frequency sags,

swells, or interruptions.

Frequency is calculated by filtering a power signal and then fitting a sinusoid per cycle of that

power signal. Because frequency is calculated per cycle, I expect to see higher frequency values

than those compared to the OPQ Box. This is due to the fact that a smaller frequency estimation

window contains more noise. It is unknown what window the UHM sensors use for frequency

calculation, but since it trends so nicely with OPQ Box data, I suspect it is on the order of six

cycles.

In order to compare frequency Incidents with UHM ground truth data, the ground truth data

must be scaled to account for the added noise provided by the smaller frequency estimation windows.

I empirically found the amount of added noise in the frequency domain to be .21 Hz. This value

was added to the maximum UHM values and subtracted from the minimum UHM values in order

to provide an accurate comparison. The results are summarized in Table 5.8.

168

OPQ Box UHM Ground Truth Sensor O.Sags O.Swells U.Sags U.Swells

1000 POST MAIN 1 1004 926 4143 1813

1000 POST MAIN 2 1004 926 4039 1892

1001 HAMILTON..CH 1 341 186 3337 2091

1001 HAMILTON..CH 2 341 186 3526 1951

1001 HAMILTON..CH 3 341 186 3546 1896

1001 HAMILTON..MAIN 1 341 186 3876 2087

1001 HAMILTON..MAIN 2 341 186 3746 2123

1001 HAMILTON..MCC AC1 341 186 3499 1988

1001 HAMILTON..MCC AC2 341 186 3419 2055

1002 POST MAIN 1 297 522 4143 1813

1002 POST MAIN 2 297 522 4039 1892

1003 KELLER HALL MAIN 2680 2427 2549 1524

1021 MARINE SCIENCE MAIN A 3788 4269 3652 2134

1021 MARINE SCIENCE MAIN B 3788 4269 3455 2337

1021 MARINE SCIENCE MCC 3788 4269 3106 2678

1022 AG ENGINEERING MAIN 2218 2602 3435 1390

1022 AG ENGINEERING MCC 2218 2602 3380 1477

1023 LAW LIB MAIN 197 149 2437 1673

1025 KENNEDY THEATRE MAIN 1022 619 2823 1314

Table 5.8: Frequency Incidents Comparisons

Of all of the ground truth results, the frequency comparison in the weakest. I suspect this is

caused by the amount of noise inside the short frequency estimation windows. For the most part,

OPQ observed frequency Incidents are less than possible UHM observed Incidents. This is expected

since not all frequency swells and sags will results in the creation of an Incident within Mauka.

However, we see that Boxes 1003, 1021, and 1022 overestimate the amount of verified frequency

swells.

Future work on frequency estimation should include experimenting with different sized windows

in an attempt to remove some of the noise from the estimations.

Summarizing Ground Truth Comparisons Low level metrics for frequency, voltage, and

THD were compared against metrics collected from OPQ ground truth sensors. The frequency

metrics provided the best fits, followed by voltage and THD. Comparisons were made by subtracting

the differences and finding the best Gaussian fits. Voltage and THD metrics sometimes exhibited

multiple Gaussians.

169

Events were compared to UHM ground truth data by applying thresholding on the data and

correcting for differences in low level metrics. Events were binned by minute to match ground truth

bins. Mauka Events are accounted for and are slightly underrepresented if the ground truth data

is to be believed.

Incidents were compared to UHM ground truth data by applying thresholding to the data and

correcting for differences in noise generation. Voltage and THD Incidents are well characterized,

but frequency Incidents were not as accurate.

Other than frequency Incidents, these results provide evidence that the OPQ Mauka system

provides accurate Measurements as compared to the ground truth. By the rule of transitivity, I

would like to say that all other Incidents that rely on features not collected by the UHM ground

truth sensors are hopefully well characterized by virtue of the fact that all of the data feeding into

those Incidents are well characterized.

Future work should seek to find ground truth options that provide more details such as the

duration of anomalies or something similar to Events so that Incidents can be more easily and

more directly compared to the ground truth data.

5.1.2 Ground Truth Analysis: Lokahi

The Lokahi Infrasound network is unique in that most Events and Incidents are generated manually

over known signals of interest. That is, something happens and an Event and possible an Incident

are generated from a known signal. All public Incidents identified by Lokahi framework have been

sourced and vetted. Thus, the question of sensor accuracy is: how well does Lokahi characterize

Infrasound signals using mobile devices? Results were found in accordance to the Evaluation

Section 4.2.2.

This topic was studied and discussed extensively in Asmar’s dissertation[5].

In Asmar’s dissertation, the author compared infrasound signals obtained by mobile sensors

to industry standard microphones (Bruel & Kjaer Microphone Type 4193) and microbarometer

sensors (MB3 digital microbarometer) for ground truth. The infrasound signals were generated by

a calibrated rotary sub-woofer capable of accurately producing infrasound signals.

Figure 5.10 shows the noise power spectral density levels between a mobile sensor with an

iPrecision microphone and a B&K ground truth sensor.

170

Figure 5.10: Noise power spectral density levels with 95% confidence interval (CI) [1.9, -1.6] dB re
1 Pa2/Hz for iMic and B&K across 0.97 to 22.4 Hz.

Figure 5.11 shows the noise coherence results between a mobile sensor with an iPrecision mi-

crophone and a B&K ground truth sensor.

171

Figure 5.11: Noise coherence results for iMic and B&K across 0.97 to 22.4 Hz. The solid line
represents the coherence between the sensors. The filled circles represent 1/3-octave band averaging.

Figure 5.12 shows the noise response results between a mobile sensor with an iPrecision micro-

phone and a B&K ground truth sensor.

172

Figure 5.12: Noise response results for iMic relative to B&K across 0.97 to 22.4 Hz. (a) Relative
amplitude between the sensors, computed as the ratio of their response corrected spectra. (b)
Relative phase, computed as the angle of the response corrected cross-spectrum. Raw computations
are represented by a solid line, while 1/3-octave band averaging is represented by the filled circles.

In summary, these results show that distributed mobile devices meet the standards provided by

the International Monitoring System (IMS) and can be used to supplement the IMS network with

mobile distributed infrasound data. The data recorded by the mobile sensors trend nicely with

data collected by ground truth sensors.

This shows that not only are Detections and Incidents accounted for within Lokahi, but the

underlying sensors are able to accurately record infrasound levels. Asmar concluded her dissertation

by providing methods for calibrating other mobile sensors that do not make use of the iPrecision

microphones. These calibration methods have since been adapted and many of Lokahi’s other

mobile sensors are accurately calibrated to the ground truth sensors.

5.2 Results of Generality of this Framework

I have claimed Section 1.5.1 that the Laha framework is general enough to to be suitable for use in

multiple domains of DSNs. In the Evaluation Chapter 4.3.1, I provided guidelines for evaluating

Laha’s generality across the OPQ and Lokahi distributed sensor networks. Next, I will revisit the

173

evaluation guidelines and provide discussion and analysis that provides evidence that the Laha

Framework is general enough to be useful in multiple domains while still meeting the requirements

of the individual DSNs.

5.2.1 Results of Laha Generality for OPQ

I claimed in the Evaluation Chapter 4.3.1 that the OPQ network must be able to observe common

power quality issues including voltage sags and swells, frequency sags and swells, excessive THD,

and transients. These features were described and shown to exist within OPQ in the previous

section on validating collected data by deployments. I will summarize these results here.

Table 5.9 summarizes the relevant Incidents over the three month deployment.

Incident Classification Total Observed Mean Observed / Day

FREQUENCY SWELL 291235 3235.94

FREQUENCY SAG 244286 2714.29

EXCESSIVE THD 21395 237.72

VOLTAGE SAG 620 6.89

ITIC NO DAMAGE 93 1.03

SEMI F47 VIOLATION 24 0.27

VOLTAGE INTERRUPTION 16 0.18

FREQUENCY INTERRUPTION 14 0.16

VOLTAGE SWELL 8 0.09

Table 5.9: Summary of OPQ Incidents

As can be observed, Laha was able to detect the types of Incidents as defined by the Evaluation

chapter. I will now examine several of these Incidents in greater detail.

Example OPQ Incidents

Figure 5.13 shows a voltage sag with associated Semi-F47 and ITIC violations. Note, this is the

only such Incident where the voltage sag created both a Semi-F47 violation and an ITIC violation.

This occurred during a power outage on the UHM campus on November 9, 2019.

174

Figure 5.13: Voltage Sag with Associated Semi-F47 and ITIC Violation

Here, the initial voltage waveform and VRMS show a sag on the order of 103 cycles. This is just

long enough in duration and low enough in voltage that is breaches the Semi-F47 threshold and

barely surpasses the ITIC threshold.

Figure 5.14 provides an example of both a large voltage sag and a related Semi-47 violation,

but no ITIC violation. This is much more common in the data.

175

Figure 5.14: Voltage Sag with Associated Semi-F47 Violation

Figure 5.15 and Figure 5.16 show a voltage sag that was observed by multiple OPQ Boxes.

Figure 5.15: Co-Observed Voltage Sag A

176

Figure 5.16: Co-Observed Voltage Sag B

These two figures show a semi-global Incident that was detected by two OPQ Boxes. The first

Box was located Keller while the other was located in Kennedy Theater. There are both voltage

and frequency deviations that were tracked by both Boxes.

Figure 5.17 shows an example of a voltage swell. You will note that the Semi-F47 does not

classify voltage swells which is why there is a value absent for the bottom panel.

177

Figure 5.17: Voltage Swell

Figure 5.18 shows an example of an excessive THD Incident.

Figure 5.18: Excessive THD

178

THD exceeds 5% for a period of near 20 seconds.

Figure 5.19 shows an example of a transient that was recorded on Oct 7, 2019.

Figure 5.19: Detected Transients: Box 1001

Figure 5.20 shows an example of a frequency sag.

179

Figure 5.20: Frequency Sag

Figure 5.21 shows an example of a frequency swell.

Figure 5.21: Frequency Swell

180

These examples illustrate a subset of the types of PQ issues that OPQ Mauka is able to detect

utilizing the Laha framework. All Incidents are publicly available through OPQ View.

Local, Semi-Global, and Global Incidents

I also claimed in the Evaluation chapter that the OPQ network is capable of detecting grid wide

signals of interest. I had hoped to see at least one grid wide signal during out deployment, but am

happy to report that we actually see many grid wide signals daily. One such way of looking for

grid wide signals is to utilize Napali’s triggering results (Napali is described in [45]). These results

provide anomalous signals of interest that were observed by more than one OPQ Box. Table 5.10

summarizes the number of signals observed by one Box and multiples Boxes.

Total Events Number of Boxes that Observed the Events

170925 1

1654 2

1109 3

853 4

593 5

416 6

354 7

246 8

203 9

160 10

162 11

130 12

169 13

210 14

477 15

463 16

Table 5.10: Summary of Global and Semi-Global Events

As can be observed, most Events that were triggered were only triggered from a single Box.

These were triggered by Mauka’s triggering algorithm. All Events that were triggered by more than

one Box were triggered by Napali’s triggering algorithm. Local Events, or those that were only

observed by a single Box make up close to 96% of the observed Events. The other 4% are either

semi-global or global. We see that 463 of the Events triggered were triggered on all available Boxes

and I consider these to be global Events. Events that were triggered by 2 to 15 Boxes I consider

semi-global Events.

181

These results provide evidence that Laha as implemented by OPQ can accurately identify semi-

global and global power signals-of-interest.

Examples of Semi-Global and Global Events

First, let us look at an example of a semi-global Event as shown in Figure 5.22 and Figure 5.23.

Figure 5.22: Semi-Global Events I

Figure 5.23: Semi-Global Events II

This collection of Events was recorded on November 9, 2019 and observed by 15 OPQ Boxes

over a duration of 5 seconds. There are two voltage sags that drop to about 80 Volts. These sags

were observed by 15 OPQ Boxes. I only show two devices above for brevity. The rest look similar.

Next, let us examine an example of a semi-global Incident. Figure 5.24 and Figure 5.25 show

examples of a voltage sag Incident observed across 7 OPQ Boxes on November 23, 2019.

182

Figure 5.24: Semi-Global Incidents I

Figure 5.25: Semi-Global Incidents II

183

Here, each Box observes a sag of down to near 100 Volts. You will note other voltage sags in

the Event waveform. These were also classified as semi-global Incidents. Only two Boxes are shown

for brevity.

In summary, I’ve shown examples of several interesting semi-global Events and Incidents.

Summary of Laha Generality for OPQ

In this section, I showed that the OPQ network meets and surpasses the minimum requirements

set out in the Evaluation chapter to show the generality of the Laha framework as implemented by

OPQ. I showed that OPQ is able to detect common PQ issues and also showed that it is able to

detect semi-global and global signals-of-interest.

5.2.2 Results of Laha Generality for Lokahi

I claimed in the Evaluation Chapter 4.3.1 that the Lokahi infrasound network is able to securely

detect infrasonic signals of interest from a wide variety of heterogeneous mobile devices. The

Lokahi network has successfully detected many signatures of interest with different modalities.

These include rocket launches, aircraft operations, explosions, and signals created from objects

reentering the Earth’s atmosphere.

Locations of Lokahi sensors during the period of the Lokahi deployment were provided in Sec-

tion 4.1.2.

I will now summarize and showcase some of the most interesting data that was collected from

Lokahi that meets the requirements set forth in the Evaluation chapter. In particular, I will show

that Lokahi is able to detect infrasonic signals generated from a diverse set of sources.

Big Island Earthquake

Figure 5.26 and Figure 5.27 show a magnitude 4.5 earthquake (USGS[71]) that was detected in

the infrasound range and by accelerometers on the Big Island of Hawaii on August 12 2019. The

earthquake was observed by four sensors. I show only one sensor here (and the rest of this section)

for brevity. The full results for all examples are publicly available online[56].

184

Figure 5.26: Infrasound of Earthquake

The above Figure shows the infrasound spike created by the earthquake.

185

Figure 5.27: Accelerometer of Earthquake

The above Figure shows the anomalous accelerometer readings during the earthquake.

Figure 5.28 shows the map of the earthquake epicenter (in red) and the location of the sensors

(white are iPhones and green are Android phones) when the earthquake occurred.

186

Figure 5.28: Location of Earthquake and Sensors

It should be noted that there are two sensors on top of each other in Kailua-Kona that are not

visible in the above map.

Meteor Entry Over Hawaiian Islands

On July 25 2019, a meteor entered the atmosphere above the Hawaiian islands as reported by the

American Meteor Society[3]. The Lokahi network observed the Event on 19 sensors stationed on

the islands of Oahu, Maui, and the Big Island.

Figure 5.29 shows the infrasound as recorded by device 1637610019:1472585716. A large spike

can be observed in the infrasound range showing the meteor entering Earth’s atmosphere.

187

Figure 5.29: Infrasound of Meteor Entry

Figure 5.30 shows the locations of sensors that observed the meteor entry.

188

Figure 5.30: Meteor Entry Sensor Locations

Falcon 9 Launch and First Stage Landing

On November 11 2019, SpaceX launched its Falcon 9 rocket on a mission to deploy 60 Starlink

satellites[63]. The Lokahi network observed the launch and landing of the fist stage on a barge off

the coast of Florida in the infrasound range with four sensors located near Cape Canaveral, Florida.

Figure 5.31 shows the infrasound signal for the launch and the first stage landing.

189

Figure 5.31: Infrasound of Meteor Entry

The initial launch can be observed around 14:58 UTC with the stage 1 landing occurring near

15:02 UTC.

Figure 5.32 shows the locations of the source and sensors for the SpaceX launch.

190

Figure 5.32: Infrasound of Meteor Entry

Hurricane Lane

Hurricane Lane was a major hurricane that passed close to the Hawaiian islands on August 24,

2018[17]. The Lokahi network observed the passing of the storm using its barometer sensors (which

is still considered to be in the infrasound range) with 12 sensors stationed on Oahu and the Big

Island.

Figure 5.33 displays the barometer readings over a 24 hour window showing the storm’s arrival

and departure in the infrasound range.

191

Figure 5.33: Barometer Readings of Hurricane Lane

I have provided evidence that Lokahi is able to characterize infrasound signals over a wide variety

of source modalities including infrasound caused by ground movement, storms, rocket launches, and

atmospheric entries.

Availability of Lokahi

One of Lokahi’s goals is to ensure data delivery in the face of network outages. Lokahi achieves

this by buffering recorded data on board the mobile sensors until a time that a network becomes

available. Luckily, most Lokahi based sensors are mobile phones which provide gigabytes of storage

space. Depending on the sensor, it is possible to store weeks worth of data when a network is

absent or restricted.

Lokahi only stores metrics on data received and does not know if a sensor is trying to send

data, but is not able to. Because of this restriction, I setup a controlled experiment with 5 Lokahi

based sensors. Over the course of the week, I disabled network access on the sensors for periods

of 1 minute, 1 hour, 4 hours, and 1 day. I confirmed that the network outage data was missing

and then re-enabled network access. I then confirmed that 100% of originally missing data was

uploaded to the Lokahi servers.

At least in a controlled environment, Lokahi was able to restore 100% of its data. Anecdotally,

192

we have observed issues in other deployments where networks have been spotty rather than either

fully present or fully not present. We’ve encountered small amounts of data loss (on the order of

minutes) in such situations. It is possible to suffer data loss in situations with spotty networks, but

in my experience, this is quite rare.

5.2.3 Discussion on Types of DSNs Laha is Suitable For

In Section 1.6 and Section 1.5, I stated that I would provide a discussion on the types of DSNs that

Laha is suitable for. Working with two different DSNs in two different domains has provided me the

opportunity to think about Laha’s strengths and weaknesses. It is also given me the opportunity

to think about other domains that Laha would be useful for. I will first discuss the strengths and

weaknesses as compared to OPQ and Lokahi directly.

First, I provide a summary of Laha’s strengths in relation to common DSN properties as shown

in Table 5.11.

Item Strengths/Weaknesses

Sensor Sampling Rate Higher sampling rates utilize the Laha Hierarchy more effec-
tively for producing AML data and providing data savings.

Network Uptime Longer network uptime provides Laha more ability to self-
optimize and identify Phenomena. Data savings at higher levels
require longer network uptime.

Signal-to-Noise Laha is well suited for networks that have a low signal-to-noise
ratio by utilizing the Laha hierarchy for filtering out noisy data.

Data Acquisition Laha is better suited for networks that have the ability provide
low level data required for higher level analysis.

Sensor Availability Laha expects sensors to be networked and that sensors provide
data in close to real-time for Event, Incident, and Phenomena
generation.

Numerous Events Laha’s Phenomena rely on a large number of Events and Inci-
dents to be present in the network to inform Phenomena.

Multiple Signal Classifications Laha works best with multi-modal data that can be classified
in more than two ways since the added overhead of Laha may
be too much for simple classification schemes.

Designed For Laha It is easier to design a network around Laha than it is to fit
Laha into an existing network.

Other DSNs Laha’s benefits would be useful in any network that utilizes
high volume and near real-time data transfer. Some examples
include earthquake monitoring, environmental monitoring, and
traffic monitoring.

Table 5.11: Summary of Laha’s Strengths and Weaknesses

Next, I will provide a discussion of some of these topics in more detail.

193

DSN Sampling Rate

I find Laha’s data savings in the lower levels of the Laha hierarchy to be useful in situations where

the sensors have high sampling rates and where the raw data will eventually be sent to the cloud

for analysis. This is true of both OPQ and Lokahi who have sampling rates of 12,000 Hz and up to

8,000 Hz respectively. In both cases, the raw data is sent to the cloud for further analysis. In OPQ,

this takes place when triggering algorithms detect an Event. In Lokahi, the raw data is sent along

with the high level AML feature extracted data. When TTL is implemented for these networks,

we observe a large decrease in stored data and an increase in stored signal-to-noise ratio.

Networks with low sampling rates (on the order of seconds to minutes and higher) would not

see as large of benefit in terms of storage savings due to the low sampling rate. In fact, networks

with low sampling rates may benefit from a store everything approach if the resources are available.

Network Uptime

Laha’s data savings at higher levels in the hierarchy are only achievable for long running networks.

Further, Laha’s self-optimization capabilities only kick in over longer durations of network uptime.

Because of this, Laha is better suited for networks with longer lasting deployments. Laha would

be too cumbersome and not provide enough benefits for short lived, ad-hoc networks.

Signal-to-Noise Ratio

Laha is well suited for networks that experience a low signal to noise ratio. When most of the data

is noise, Laha’s data management combined with its ability to filter out noise in analysis puts it in

a unique position to deal with large volumes of noisy data. Networks with a high signal-to-noise

ratio would not gain the data saving benefits that Laha provides.

Sensor Availability

Laha attempts to classify Events and Incidents in near real time. If Events and Incidents are not

classified in a timely manner, the underlying data might be garbage collected. Because of this,

Laha is suited for networks that send data features in a timely manner. Sensors within the Laha

framework are expected to be networked. Laha is ill suited for networks that do not provide data in

a timely manner such as those that require physical access to get the data or those that buffer the

data for long durations before transmitting. Further, Laha expects all data to arrive at a central

location for further processing. This requires a network where each sensor in the network is able to

send its data to an analysis process. Laha is not suited for networks where data must be retrieved

from each sensor.

194

Numerous Events

One of the major differences between OPQ and Lokahi is the number of identified Events and

Incidents. Events and Incidents for OPQ are automatically found and classified and as it turns

out, there is a lot going on on the UHM micro-grid in terms of PQ signals of interest. Contrast

this to Lokahi which aims to classify significant signals observed in the infrasound range. Because

the thresholds are higher for classifying Lokahi Events and Incidents, there are naturally less of

them. This dichotomy is important because higher levels of the Laha hierarchy make use of large

numbers of Events and Incidents to produce viable Phenomena. Because of that, Laha is better

suited for networks that produce large amounts of Events and Incidents. These larges amounts of

Events and Incidents provide Laha a greater opportunity to produce Phenomena and self-tune.

An interesting consequence of the above is that data at different levels in the two networks

appear to provide different weights of importance. For example, Events and Incidents are somewhat

rare in the Lokahi network due to the high threshold required to become an Event or Incident. These

Incidents are generally infrasonic events that are well characterized. Because of the high threshold

and rarity of these data types, the Incidents that are classified by Lokahi tend to provide greater

context than Events and Incidents in OPQ where there are many more Events and Incidents and

I rely on Phenomena to find important signals of interest. This leads me to believe that networks

with large amounts of Events and Incidents are better analyzed with Phenomena where networks

with low amounts of Events and Incidents may not necessarily need Phenomena to provide use

context and actionable insights.

Multiple Signal Classifications

Networks that require only binary classifications or a small number of classifications would not be

well suited by Laha. As an example, a network of temperature sensors that only creates Events

when a threshold is crossed is likely better served by edge processing or sending all the data and

only saving high level metrics and thresholds Event indications. Laha really shines when it has the

ability to apply multiple classification to multimodal data and to act on those classifications with

Phenomena.

Data Acquisition

Networks that only send high level metrics (e.g. AML values) would be a difficult fit for Laha as

Laha relies on the fact that it can access high-fidelity data to perform analysis in the Detection and

Incident levels. Laha can still be used (from the AML up), but I suspect the quality of the results

to greatly suffer.

195

Designing for Laha vs Altering a Design for Laha

I found that it is much easier to build a Laha network from the ground up compared to integrating

Laha into an existing network. OPQ was designed with the explicit purpose of being a Laha

compatible network. Further, OPQ, being an academic project, had the freedom to allow me to

make any changes required to fit the implementation to the theory.

Lokahi on the other hand has goals of providing a secure and stable Infrasound network. Lokahi

also provides much of the basis for work done at the Infrasound Laboratory in Kailua-Kona and

at other institutions by our collaborators. Because of these requirements, it was more difficult to

make sweeping changes specifically to fit Laha’s model.

Other Fields Laha would be Useful For

I believe that Laha would be useful in many distributed sensing domains that collect large amounts

of data and provide opportunities for many different types of signal classifications. Although

not part of my direct research, Lokahi is experimenting with including other sensor data other

than infrasound such as magnetometer, accelerometer, gyroscope, light, and barometer in order to

provide more sensing modalities. Laha provides a basis for integrating and analyzing these new

sensing modalities.

Summary of Laha Benefits and Weaknesses

In summary, I believe Laha would be a great fit for long running networks that provide high data

rates and multiple classification possibilities. These include networks that perform earthquake

monitoring where signals are few and far between, environmental monitoring with multi-modal

data, traffic monitoring and traffic incident detection, and security monitoring with security in-

cident detection to name a few. As network speeds increase and as the availability of low cost

networked embedded computers become more prevalent, Laha awaits to manage the distributed

sensor networks of the future.

Laha is not well suited for networks with low data rates or simple classifications schemes due

to the added complexity. For simple networks such as these, traditional DSN optimization and

management approaches are likely more useful.

5.2.4 Discussion of Laha Levels

In Section 1.6 and Section 1.5, I stated that I would provide a discussion on the Laha hierarchy.

Now that I have had the chance to implement Laha levels in two separate DSNs, I want to discuss

my thoughts on the layout of the levels and the individual levels themselves.

To summarize, Laha utilizes 5 levels. The Instantaneous Measurements Level (IML) includes

sampled raw data waveforms. The Aggregate Measurements Level (AML) contains summary statis-

196

Figure 5.34: Proposed Changes to Laha Levels

tics about features extracted from the IML. The Detection Level (DL) utilizes Events to define

windows of data that may or may not contain signals of interest. The Incident Level (IL) contains

data and metadata for classified signals of interest. The Phenomena Level (PL) provides context

to groupings of subsets of data and also provides the ability to predict Future signals of interest all

the while providing optimizations for the rest of the levels below it.

I believe that these original levels worked well in both DSN domains that I analyzed, however,

there are a few things that would be interesting to experiment with in future work. Figure 5.34

shows proposed changes to the Laha hierarchy with the proposed changes highlighted by red ovals.

Next, I will discuss these changes in detail.

197

Discussion of IML

The IML is a bit contrived for some networks. Take OPQ as an example. The IML solely exists on

the OPQ Boxes themselves bounded by the available memory. This is in contrast to all other levels

which co-exist within a single cloud infrastructure. It feels like the IML is a bit removed from the

rest of the levels because of this.

When Events are found, the IML data is copied into the Event. Similarly, IML data is copied

into Incidents. This is in contrast to all other levels which do not perform any copying and merely

“point” to the data. For example, Incidents and Events simply point to a range of Measurements

and Trends instead of copying those values into those levels. This is possible because the TTL

values of those Measurements and Trends match those of the Events, Incidents, or Phenomena.

Discussion of New Level SML

I think it would be useful to add another level under the IML called the Sensor Measurement Level

(SML). This level would signify all of the raw data that is currently living on the sensors themselves

and has not been sent to a central server for analysis. I would keep the IML, but this level would

contain all of the raw samples that were sent from sensors to a central server. Instead of copying

data into Events and Incidents, the data would remain in the IML and simply be referenced from

Events and Incidents. An experiment for testing this new level is provided in Section 6.1.4.

Discussion of AML

I believe the AML is critical and I am not sure that I would make any changes to it directly. It alone

is responsible for providing the triggering architecture required for detecting Events. However, I

would consider adding a new level between the AML and the DL called the Data Fusion Level

(DFL).

Discussion of New Level DFL

The DFL would be responsible for collecting AML data from heterogeneous sources. For instance,

this could be a useful way to feed ground truth data into OPQ alongside the OPQ Box data in

an attempt to perform real time validation of our data. It would also be interesting to fuse other

data sources such as temperature data, weather data, or power usage data in an attempt to find

correlations between other data streams and what was observed by the OPQ Boxes. I would place

the DFL between the AML and DL because I would like the DL and IL to be abstracted over AML

values. An experiment for testing this new level is outline in the future work Section 6.1.4.

198

Discussion of DL and IL

In certain instances, I believe the DL and IL could be combined into a single level. The main

difference between Events and Incidents is that Incidents provide a known classification and only

reference a subset of the Event data. It would be easy to combine these levels into a single

Detection Level that has parameters listing known classifications within the Event along with

timestamps. This would require less housekeeping and potential data savings by not copying the

Incident waveform from the Event waveform.

Discussion of PL

I would not make many changes to the PL. I believe the PL is fundamentally important for providing

context for large amounts of Events and Incidents.

Discussion of Sub-Levels

I think there is room to create sub-levels within the main levels. For example, sub-levels could be

added to perform compression, encryption, metric collection, quality assurance, or logging. These

are currently handled by individual Actors within the levels, but in certain instances, I think it

could be helpful to promote these ideas to sub-levels as useful parts of the Laha hierarchy.

Summary of Discussion on Laha Levels

Table 5.12 summarizes the discussion of Laha Levels.

Laha Level Summary

SML Create a new level “SML” used for describing sensor data stored on sensors.

IML Redefine IML for data that has been received from sensors. Store IML data in

the IML instead of copying to other levels.

AML No changes.

DFL Create a new level “DFL” that performs data fusion with other data sources.

DL Possibly combine with IL

IL Possibly combine with DL

PL No changes.

Sub-Levels Introduce new sub-levels into existing levels to perform compression, encryption,

metric collection, quality insurance, etc.

Table 5.12: Summary of Laha Levels Discussion

199

5.3 Results of Converting Primitive Data into Actionable Insights

Converting primitive data into actionable insights in one of the main tenants of this framework

as described in Section 1.5.2. This is accomplished within Laha by moving data upwards through

Laha’s hierarchy. Results for converting primitive data into actionable insights were found using

the guidelines provided in the Evaluation Section 4.3.2.

Within Laha, raw sampled signals (IML) are first converted into low fidelity feature streams

(AML). This provides context by extracting known features from the signal and providing a sum-

mary statistics view of those features. Within OPQ, raw ADC samples are converted to feature

streams that contain minimum, maximum, and average values for voltage, frequency and THD.

Within Lokahi, raw ADC samples are converted to feature streams that include summary statistics

about the sampled data as well as a summary statistics for other fields (such as location and timing

accuracy). In both networks, raw samples are converted to feature streams which add context

to the original data. These feature streams provide actionable insights in the form of informing

higher levels in the hierarchy if a nominal signal is likely within that stream. This brings us to the

Detections Level (DL).

The DL is responsible for identifying Detections which provide a window that includes metadata,

IML, and AML data which may or may not include signals of interest. Detections add context to the

AML in the form of metadata (such as window length and sensors affected). Detections are found

either manually (in the case of Lokahi) or using a triggering algorithms (OPQ). Detections provide

actionable insights by providing the Incidents Level (IL) with the chance to classify known signals

of interest from the Detection window. Without Detections, Incidents could not be found as easily.

Once a Detection has been observed, the data is forwarded to the IL where signal classification

occurs.

The IL is responsible for classifying signals of interest against known signals. Multiple Incidents

can be found within a single detection. The IL provides added context in the form of these classi-

fications. These classifications are actionable because they inform us about anomalous conditions

on the network. These conditions are useful for others who might want to further investigate why

anomalous signals were observed. For example, if many voltage sags are observed by OPQ for a

single device, it alerts others that there may be a power issue somewhere in the building that the

sensor is located. This issue may or may not need to be addressed, but it is actionable.

Perhaps the most interesting actionable insights Laha gathered are from Phenomena.

5.3.1 Results of Phenomena

When I first conceptualized Phenomena, I expected them to be useful for providing context to data

that did not exist at lower levels. Being able to determine if a signal is periodic or not is interesting.

Being able to decide if Incidents are similar is interesting. Being able to create Future/Predictive

200

Phenomena is interesting. All of these Phenomena are interesting in their own right, but I believe

the greater discovery is that Phenomena provide a way to filter out the signal from the noise. They

provide a way of grouping lots of similar signals together so that they can be discussed as a group.

This is something that all Phenomena have in common: they take collections of signals found at

lower levels which have been grouped in such a way that they can be discussed as a grouping of

data.

The design of Phenomena can be found in Section 3.2 with implementation details outlined in

Section 3.4.3. Evaluation guidelines can be found in Section 4.3.2 and Section 4.4.

Results of Annotation Phenomena

Annotation Phenomena provide the means to add context to groupings of Events, Incidents, and

sensors as mentioned in Section 3.2.1). Annotations contain a description grouping together related

data as well as meta-data further describing the related data. Annotations add context on top of

general classifications. As an example, Incidents within OPQ only provide information related to

the PQ classification that it was assigned. However, this tells us nothing more about how the

Incidents might be related (or if they even are related) and tells us nothing about the source of the

anomalous signals.

Because Incidents within the Lokahi network require human vetting before publishing, all In-

cidents are assigned Annotations on Incident creation. These Annotations include a description

of the signal source and also provide meta-data for linking the signals to known publications. For

example, in previous sections, I showed that Lokahi was able to detect a meteor entry into the

Earth’s atmosphere above the Hawaiian islands. The Annotation for this Incident provides infor-

mation about the source as well as provides links to third-party sources that verify the signal of

interest. The Lokahi network contains 41 Annotations. Each Annotation in the Lokahi network

groups one or more sensors that observed the same Incident.

The OPQ network has far fewer Annotation Phenomena. The reason for this is that I do not

know the source for many of the PQ signals observed by the OPQ network. Only a small handful of

PQ signals have a known source. These known source signals became the Annotation Phenomena

in the OPQ network. Table 5.13 summarizes the Annotation Phenomena observed by OPQ.

Description Time (UTC) Boxes Events Incidents

Oahu Storm 2019-10-11 00:00 16 4 400

Makiki Power Outage 2019-10-16 22:37 16 1 143

Manoa Power Outage 2019-11-23 20:02 15 1 168

Table 5.13: Summary of Annotation Phenomena

Annotation Phenomena within OPQ has allowed me to provide context and groupings for a

201

total of 6 Events and 711 Incidents that otherwise would just be “just another Event or Incident”

and are now “Events and Incidents caused by storms and power outages”.

Annotations not only provide extra context on top of groupings of data, but they also affect the

data that is stored. If an Annotation is created early enough, all Measurements, Trends, Events,

and Incidents related to the Annotation will have their TTL values updated to be the same as

the Annotation Phenomena. The end result is that the data that is grouped by the Annotation

is saved for as long as the Annotation, allowing further analysis and saving data that has been

contextualized. This is true of all Phenomena discussed in this section.

At this stage, Annotation Phenomena provide a way to discuss related Events, Incidents, and

sensors. In networks that have large amounts of Events and Incidents, this can be a valuable tool to

assign context to related data and help filter the signal from the noise. Annotations are essentially

fancy labels with some metadata to describe the data. This would be useful for any future work

that intends to add machine learning to the Laha framework.

I admit that Annotation Phenomena is representationally simple, however, I believe it adds

great value in terms of contextualizing a large amount of Events and Incidents and for providing

actionable insights that are useful to the consumers or this data. As an example, it is much more

informative to say “Lokahi observed a rocket launch” than it is to say “Lokahi observed a non-

nominal spike in the infrasound range”. In a similar vain, it is much more informative to say “OPQ

observed voltage sags relating to a power outage in Manoa” than it is to say “OPQ observed voltage

sags across multiple sensors”.

I would like to integrate Annotation Phenomena with other Phenomena such as Periodic or

Similarity Phenomena. However, a lack of known signal sources for OPQ and a lack of Incidents

for Lokahi make this difficult. Annotation Phenomena are most useful when an observed signal

has a known source or when there are a large amount of Annotations in conjunction with a large

amount of Events and Incidents. Future work should examine how to better integrate Annotation

Phenomena with other Phenomena in an attempt to provide automatic Annotation classifications.

Results of Periodic Phenomena

Periodic Phenomena identify periodic signals of interest as described in Section 3.2.3. Mauka

has identified four periodic Phenomena. Table 5.14 summarizes the results of observed Periodic

Phenomena.

202

Box Period Std Peaks Periods Events Incidents Mean Deviation

1021 2127.55 8.81 41 463 332 4 -3.14

1003 1406.75 81.66 17 263 11 4 1.03

1023 2017.0 60.21 5 298 47 0 -1.25

2001 2760.0 123.75 5 236 0 0 1.61

Table 5.14: Summary of Periodic Phenomena

The major metrics utilized for evaluating the quality of periodic Phenomena are the number of

peaks identified in the autocorrelated signal and the standard deviation of those peaks. A single

peak or two peaks does not provide any information about if a signal if periodic or not. Two peaks

could be periodic, but it could also just be a coincidence. Three peaks is the minimum amount of

peaks that classify something as potentially periodic, however the confidence would be extremely

low.

In the Table above, we see that Box 1021 has a periodic signal with 41 peaks, Box 1003 observed

17 peaks, and Boxes 1023 and 2001 only display 5 peaks. From this data, I am only confident that

Boxes 1021 and 1003 provide enough peaks to classify the data as truly periodic. Boxes 1023

and 2001 do not provide enough peaks to be confident enough that these are actually Periodic

Phenomena.

It should be noted that Box 2001 is not part of the OPQ UH micro-grid deployment. This Box

was sent to EPRI for evaluation purposes. Other than the summary provided above, I will leave

Box 2001 from these results due to lack of ground truth data and due to the fact that this Box is

not officially part of the deployment designed for this dissertation.

Because Box 1021 provides the best metrics in terms of both peaks and standard deviation, I

will focus my results to that sensor.

Box 1021 in MSB experiences periodic voltage sags as shown in the second panel of the Trend

data presented in Figure 5.35.

203

Figure 5.35: Periodic Voltage Sags

The above figure shows many periodic voltage sags over the course of one week. These voltage

sags have been present over the entire deployment of the OPQ network and were not observed by

Boxes outside of MSB.

These voltage sags were identified as periodic within Mauka’s Periodicity Plugin. The original

signal had its DC offset removed by subtracting the mean of the signal from the signal. Then

the signal was filtered using a 4th order Butterworth high-pass filter. The filtered signal was then

autocorrelated with itself. The distance between the peaks of the autocorrelation provide the period

between peaks in the original signal. The mean of the peaks is the mean period of the Periodic

signal. The Periodicity Plugin also finds the standard deviation of of the peaks found during

autocorrelation. The combination of the mean period and the standard deviation of the period are

then used to find the original times of the peaks and to produce Future Phenomena.

Once the plugin has a measure of mean period and standard deviation of the period, peak

finding is employed to find the peaks of the original signal (as opposed to the autocorrelated

signal). The peak finding algorithm is parameterized to not find peaks with a width less than

that of the mean period minus the standard deviation of the period. These newly identified peaks

provide timestamps and deviations from nominal for original periodic signal.

Figure 5.36 shows an example of the Periodic Phenomena observed by Box 1021.

The above figure shows the original signal in the top panel, the filtered signal in the middle

panel, and the autocorrelated signal in the bottom panel. The mean and standard deviation of the

204

Figure 5.36: Periodic Phenomena Example

autocorrelation peaks were used to identify the voltage sag peaks in the original signal on the first

panel. The timestamps and deviations from nominal are then extracted from the peaks in the first

panel and stored in the database to be utilized by Future Phenomena.

Phenomena are designed to provide adaptive optimizations to the DSN. Periodic Phenomena

provide optimizations in several ways. First, Periodic Phenomena get better over time. Because of

the stability of the signal, consecutive runs of the Periodicity Plugin provide more accurate results

during times when there is less noise in the periodic signal. Over time, the plugin is able to identify

periodic signals with smaller standard deviations than previous runs. As the standard deviation

becomes smaller, the accuracy of detecting periodic signals becomes higher.

As an example, when the periodic signal at Box 1021 was originally identified, the plugin

identified a signal with a period of 44 minutes and a standard deviation of close to 9 minutes. Over

the course of about a week, the Periodic Phenomena self optimized and now provides a period

of about 35.5 minutes and a standard deviation on the order of 8 seconds. This matches what I

observed empirically and in the ground truth data.

Periodic Phenomena self-optimizes by utilizing data gathered from Future Phenomena. Future

Phenomena adjust the underlying Event thresholds and the Measurement and Trend rates of OPQ

Boxes. During the time window of a future Phenomena, Measurement and Trend rates are increased

while Event thresholds are decreased. The net result of this is the ability to detect Events that

would not have otherwise been detected. More importantly, by increasing the Measurement rate,

205

the periodicity plugin gains higher fidelity data from the increased data rate which in turn provides

Periodic Phenomena the ability to better classify periodic signals of interest, thus decreasing the

standard deviation and increasing the accuracy of the plugin. The Periodicity Plugin and Future

Plugins work in conjunction to optimize each other. The more accurate the Periodic Phenomena

become, the more accurate the Future Phenomena become and vice versa.

One of the tenants of Periodic Phenomena (or one of the tenants of Phenomena in general)

is to identify groupings of Events and Incidents that occurred during the period identified by the

Phenomena. The summary Table presented in the beginning of this section provides counts for the

number of Events and the number of Incidents that correspond with periodic signals of interest. For

example, OPQ Box 1021 identified a total of 463 periods that should have observed a voltage drops.

Of those 463 periods, 332 (or about 72%) of the periods contained Events that were identified by

Mauka. Four voltage sag Incidents were also observed during these periods. This is to be expected

as most of the voltage sags observed by 1021 do cross the Event thresholds, but the deviation from

nominal is not large enough to pass the voltage Incident thresholds. This Phenomena provides

groupings of Events and Incidents that are related to the periodic signal of the sensor. This is

important because previously these were just voltage sags Events and voltage sag Incidents. This

Phenomena adds context to these Events and Incidents by providing a grouping that shows that

they were part of a periodic signal rather than individual PQ issues. The next section will show

how Future Phenomena modifies Event thresholds in order to capture Events that might otherwise

be missed due to not passing the Event thresholds.

I have attempted unsuccessfully to determine the cause of the periodic voltage sags at this

location. My original hypothesis was that the cycling of the building’s HVAC units caused the

voltage sags. If that was the case, then it should be possible to see pressure changes in the

infrasound range as the HVAC system cycled on and off. Going off of this assumption, I co-located

a Lokahi sensor with the OPQ Box in MSB in an attempt to measure the HVAC cycles using the

onboard barometer of the Lokahi sensor. After collecting data for one week, I was not able to

observe any signals in the barometer data that correlated with the voltage sags.

It is possible that the HVAC system is constantly pushing air through the building, but the

coolant machinery kicks in once every 34 minutes. If this is the case, then the Lokahi sensor

would not be able to identify changes in air pressure. One way to test this would be to install a

temperature sensor on the OPQ Box to track changes in temperature. This would make for an

interesting future direction allowing OPQ to track if changes in the environment are related to

changes in PQ readings.

It should be noted that although Lokahi sensors record the temperature, they mainly record

the internal temperature of the sensor’s processor and these readings are generally not affected by

the ambient temperature that the sensor resides in.

I have provided evidence in this section that show OPQ Mauka was able to identify Periodic

206

Phenomena. I also showed how this Phenomena is able to provide optimizations to the DSN. I have

shown the Periodic Phenomena is able to provide groupings for Events and Incidents, providing

added context and actionable insights.

Results of Future/Predictive Phenomena

Future Phenomena are generated from Periodic Phenomena as described in Section 3.2.5. Future

Phenomena predict when signals of interest should be observed by a particular sensor. Future

Phenomena store information about its time window, the OPQ Boxes affected, and the expected

feature that is predicted to be non-nominal. Future Phenomena also directly perform optimizations

on the OPQ network. They are capable of modifying Event thresholds for the frequency, voltage,

and THD features as well as modifying the data rate of OPQ Boxes. Because the Future Phenomena

is capable of modifying the system, I expected to detect Events that would have otherwise been

missed due to the threshold being too high.

The Periodic Phenomena that were discussed in the previous section play an important role

in creating Future Phenomena. Future Phenomena are created based off of the mean period and

standard deviation of the period from the Periodic Phenomena. Future Phenomena attempt to

predict four hours of Events and Incidents from the last known timestamp of a Periodic Phenomena.

The value of four hours was chosen due the the interplay between the Periodicity plugin and

Future Phenomena plugin. The Periodicity plugin runs once per hour and checks for periodic

signals of interest using Measurements gathered over the previous 24 hours. Since I want the

Future Phenomena to be optimized by Periodic Phenomena, I wanted to choose a value that was

larger than one hour period used by the Periodicity plugin. I also did not want to chose a large

value for the similar reasons. The further out predictions are made, the less likely they are to

be accurate. I expect the interplay between Future Phenomena and Periodic Phenomena to be

such that predictions stay accurate due to the fact that the Phenomena optimize each other. By

choosing a low number such a four hours instead of say twelve hours, a day or more, the system is

more likely to make correct predictions.

Future work should investigate with changing these value or even creating multiple layers of

predictions at different time scales to see how they affect the underlying system’s ability to identify

and predict periodic signals of interest.

Future Phenomena were generated from all four of the previous Periodic Phenomena discussed

in the previous section. Table 5.15 summarizes the results of Future Phenomena as implemented

by OPQ Mauka.

207

Box Future Phenomena Unrealized Realized

1021 9 185 210

1003 113 52 61

1023 173 113 60

2001 91 91 0

Table 5.15: Summary of Future Phenomena

I use the term “realized” to specify whether a Future Phenomena observed Events or Incidents.

If a Future Phenomena does not contain any Events or Incidents, I use the term “unrealized”.

The summary above shows that just over 53% of all Future Phenomena for Box 1021 are realized.

I had hoped that this value would be higher, but not all is lost. First, the amount of realized

Events increases over time as the Future Phenomena self-optimize in conjunction with Periodic

Phenomena.

Figure 5.37 shows the percentage of realized Future Phenomena over time.

Figure 5.37: Future Phenomena Self-Optimization

The Figure above shows that initially, the percentage of realized Events is fairly sporadic. Over

time, as Future Phenomena and Periodic Phenomena apply optimizations to the underlying DSN,

the amount of realized Future Phenomena increase.

Future Phenomena provide multiple optimizations to the underlying DSN. Future Phenomena

208

can modify Event thresholds and data rates. These modifications increase data fidelity (which in

turn helps to produce more accurate Periodic Phenomena), and also decrease Event thresholds.

Because of the decreased Event thresholds, I expect Mauka to detect Events that would otherwise

not have been detected.

Of the 210 realized Future Phenomena for Box 1021, exactly 37 of them contained sub-threshold

Events, that is voltage sag Events that are smaller than the default sag threshold of 2.5% or

117.0 Volts. These 37 Events would not have been captured by the default Event trigger without

modifications applied by Future Phenomena. Not only were these Events found using Future

Phenomena, but they are also part of the Periodic Phenomena data set that created the Future

Phenomena in the first place.

Figure 5.38 shows an example of a sub-threshold Event found utilizing Future Phenomena.

Figure 5.38: Sub-Threshold Event

Here we can observe a voltage sag of of just over 1% deviation from nominal. This voltage sag

would not have been observed without modifying the Event thresholds using this Future Phenom-

ena.

These results provide evidence that Future Phenomena are able to predict Future Events better

than half of the time. I have shown that the Future Phenomena are capable of improving over time

based on optimizations applied by the Periodic Phenomena and Future Phenomena. I have shown

that Future Phenomena are capable of detecting sub-threshold Events that would have otherwise

been missed by normal triggering algorithms.

209

Results of Similarity Phenomena

Similarity Phenomena attempt to add context to Incidents by grouping sets of related Incidents

together. These groupings allow us to discuss Incidents as Incidents that belong to a particular

group rather than individual Incidents. For example, in the OPQ network, frequency Incidents

dominate in count compared to all other Incidents types. This makes it difficult to discuss frequency

Incidents and to separate the proverbial wheat from the chaff. Similarity Phenomena were designed

to provide a way of providing additional context on top of large numbers of Incidents.

Similarity Phenomena provide multiple optimizations to the underlying DSN in terms of data

storage requirements. Unlike other Incidents which have their data saved when a new Phenomena

is created, Similarity Phenomena provide the ability to discard data once it has been classified into

a particular cluster. Now, instead of saving all frequency swells that have a mean duration of 100

ms and a mean deviation of -.1 Hz, Laha can discard the original data and only update the counts

within the Similarity Phenomena.

Two approaches were taken to find similar groups of frequency Incidents with varying success.

I initially attempted to utilize hierarchical clustering[31], but had issues due to the high memory

requirements required for performing agglomerative clustering. In agglomerative clustering, point-

wise distances are found which ends up providing a memory overhead of O(N2). This memory

overhead is too large to be useful on our cloud based OPQ server with a large number of Incidents.

I tried to perform agglomerative clustering on a development machine with 32 GB of memory, but

still ran into memory issues. Because of these memory issues, I attempted to focus my efforts

on k-means[33] clustering which provides memory overhead of closer to O(N + k ∗ d). K-means

clustering was used to find groups of related clusters with an empirically found k value.

I focused my Similarity Phenomena on frequency Incidents due to the large amount of frequency

Incidents present in the OPQ system. Frequency Incidents were compared using a distance metric

comprised of the duration of the Incident and the maximum deviation from nominal of the Incident.

Let us first examine the distribution of frequency Incidents collected from all OPQ Boxes over

the period of the OPQ deployment as shown in Figure 5.39.

210

Figure 5.39: Frequency Incidents Distribution

From this distribution, we can gain a pretty good idea of the makeup of OPQ’s frequency

Incidents. Most frequency Incidents are relatively short in duration (less than 1 second). Large

deviations from nominal tend to only occur over short durations. This is expected since frequency

tends to self-correct rather quickly on power grids. There is a long tail of sags and swells that don’t

deviate too far from nominal with durations over 40 seconds.

In terms of clustering, I expected to see clusters for the initial set of Incidents that are close to

nominal and short in duration. I expected to see clusters for the data that are far from nominal and

short in duration and I expected to see clusters that are longer in duration but closer to nominal.

I had hoped to have seen more well defined clusters in this Incident data set, but instead the

combination of voltage sags and swells almost takes on a Gaussian distribution turned on its side.

Regardless, I believe that clustering of these values provides context and interesting insights on top

of the individual Incidents themselves.

K-means clustering was applied to both the frequency swell and frequency sag data sets. Fig-

ure 5.40 shows frequency Incidents clustered using k-means with k = 8.

211

Figure 5.40: K-Means: Frequency Incidents (k=8)

The distance metrics provided were normalized in both the x and y directions to perform k-

means, and then denormalized for display of the results. I empirically found that k = 8 provides a

nice set of clusters that characterize both the durations and the deviations from nominal. Smaller

values of k do not provide enough resolution in the y-direction while larger values of k provide too

many clusters in the x-direction. The only negative aspect of selecting k = 8, is that long duration

Incidents are generally classified together. This is acceptable because long duration Incidents are

much more rare than short duration Incidents. The above Figure shows clusters for short duration

Incidents that are close to nominal, clusters for short duration Incidents that are further from

nominal, and clusters for Incidents that are close to nominal, but have longer durations.

Table 5.16 summarizes the results of the frequency sag Incidents found using k-means sorted

by mean duration.

212

Cluster Incidents Mean Duration Std Duration Mean Value Std Value

5 79 56.19 17.33 47.70 5.21

1 116769 98.91 93.97 59.84 0.08

6 35957 809.18 261.35 59.73 0.21

3 20059 1908.64 354.46 59.77 0.13

0 8931 3447.78 575.45 59.75 0.12

7 3121 6132.47 1016.73 59.74 0.13

4 1079 10780.30 1829.83 59.75 0.13

2 242 19729.35 4278.64 59.72 0.13

Table 5.16: Results of Similarity Phenomena for Frequency Sag Incidents

The above Table displays some interesting features. First, we can gather that 152,805 (82%)

frequency sag Incidents all have mean durations less than 1 second. Next, we can observe that

cluster 5 captures the outlying short duration voltage sags that have larger deviations from nominal

(47 Hz). The rest of the clusters show mean frequency sag values near 59.75 Hz, but vary in duration.

You will also note that the standard deviation on the duration increases as the duration increases.

This is caused by the smaller number of Incidents that are created at longer durations.

Table 5.17 summarizes the results of the frequency swell Incidents found using k-means sorted

by mean duration.

Cluster Incidents Mean Duration Std Duration Mean Value Std Value

7 78577 138.63 176.19 60.10 0.06

0 95488 158.29 175.95 60.27 0.08

3 136 245.82 398.53 65.14 1.89

5 21972 1469.80 433.48 60.21 0.12

2 8954 3298.74 633.05 60.29 0.12

1 3422 6046.04 1072.05 60.31 0.11

6 1027 11297.67 2003.82 60.32 0.13

4 252 21019.67 4684.53 60.39 0.32

Table 5.17: Results of Similarity Phenomena for frequency Swell Incidents

Clusters of frequency swells provide similar results to clusters of frequency sags. For instance,

174,201 (83%) frequency swell Incidents are less than 1 second in duration. Cluster 3 contains

frequency swell Incidents that are further from nominal while other clusters vary in duration and

remain closer to nominal.

213

This combination of Similarity Phenomena for frequency sag and swell Incidents creates a total

of 16 Similarity Phenomena within the OPQ network, 8 for each frequency Incident type.

So how can these results be used to optimize the underlying DSN? In the simplest case, the

DSN can be tuned to throw away data from Incidents that belong to “non-interesting” clusters.

One way to define non-interesting clusters is to define clusters that are both shorter in duration

and closer to nominal.

For example, it is possible to estimate the amount of data that would be saved if all frequency

Incidents less than one second and close to nominal are only counted and not saved to the network’s

data storage. Equation 5.2 provides estimated data savings for a given non-interesting cluster, where

IN is the number of Incidents in the cluster, µD is the mean duration of the cluster in ms, SR is

the sampling rate in Hz, SS is the size of a sample in bytes, and µSIM is the mean size of Incident

metadata.

est data savings bytes = IN ∗ ((
µD

1000
) ∗ SR ∗ SS + SIM) (5.2)

Table 5.18 shows the estimated data savings for frequency sags and swell Incidents for clusters

that are less than one second in duration and closer to nominal.

Type and Cluster Id Incidents Data Saved MB

FSag 1 116,769 319.81

FSag 6 35,957 711.42

FSwell 7 78,577 290.12

FSwell 0 95,488 397.61

Total 326,791 1718.96

Table 5.18: Estimated Data Savings from “Non-Interesting” Frequency Incidents

Here we can observe that the underlying storage would conserve about 1.7 GB worth of data

if non-interesting frequency Incidents were only counted and not stored. Further, this removes a

large amount of Incidents (326,791) from the set of all Incidents, helping to further separate out

interesting Incidents.

I have provided evidence that Similarity Phenomena can be found using traditional k-means

clustering. The clusters that are produced provide added context to both the duration and sever-

ity of the Incidents. The clusters can be utilized to optimize the DSN to ignore non-interesting

Incidents.

Future work will examine extending this concept to other features collected by OPQ and exam-

ine including higher dimensional features sets to compare between. Future work will also include

experimenting with the concept of “non-interesting” clusters to further refine sensor storage re-

214

quirements.

Summary of Results for Converting Raw Data into Actionable Insights

I have shown in previous sections that data for both the OPQ and Lokahi networks utilize the

Laha hierarchy and that primitive data is indeed converted into actionable insights at higher levels

within the hierarchy. I have shown how raw ADC samples are converted from level to level and

provided discussion on what types of actionable insights can be gathered from each level within the

Laha hierarchy.

I have shown that Phenomena add context to groups of Events and Incidents and that they are

able to provide optimizations to the DSN which in turn increases the accuracy of the Phenomena.

5.4 Results of Tiered Management of Big Data

In Section 1.5.3, I provided tired management of big data as one of the major claims of Laha. In

the Evaluation Chapter 4.3.3, I examined the theoretical bounds of DSN system requirements both

with TTL (Section 4.3.3) and without TTL (Section 4.3.3) for the OPQ and Lokahi networks.

This section will focus on examining the actual DSN system requirements for the OPQ and

Lokahi networks.

All results in this section were gathered directly from the OPQ and Lokahi networks and no

estimated parameters or simulations were used.

5.4.1 DSN System Requirements: OPQ

System utilization metrics were collected during the deployment of the OPQ DSN. The metrics that

were collected are provided in the description of the SystemStatsPlugin (Section 3.4.3). In summary,

I collected metrics on plugin utilization, system resource utilization, garbage collection, tunable

Laha parameters, and storage requirements for each level within the Laha hierarchy. Evaluations

for these results are provided in Section 4.3.3 and Section 4.3.3.

There were several schema changes to the stored metric data, with the most significant change

taking place on September 20, 2019. For these results, I only used metrics collected after this date

as they contain the most useful data. Because of this, all actual data Measurements have an offset

that is greater than zero. That is, there was already data stored at each level before I started

collecting detailed metrics. This offset is removed from the actual data when comparing to the

theoretical data bounds in order to provide a more accurate comparison between the series.

Further, the astute reader will notice that there are often times more than 15 Boxes in the

metric data when only 15 Boxes were deployed for the UHM deployment. This is attributed to the

fact that several Boxes were sent to the Electric Power Research Institute (EPRI) to evaluate if our

Boxes could be used as a test bed for their power quality analysis needs. The metrics collected by

215

Laha are collected for the total set of all Boxes sending to OPQ, and thus, also sometimes include

metrics from the Boxes that EPRI are evaluating.

First I will examine the storage requirements at each level within the hierarchy. I performed

a linear regression on the total size at each level which can server as yet another measure for

estimating the size of the OPQ network. Once the actual storage requirements have been examined

in detail, I will compare the actual results to the theoretical results founds in previous sections.

DSN System Requirements OPQ: IML

The Instantaneous Measurements Level (IML) contains a window of raw samples from sensors. In

the case of OPQ, these consist of the samples of data stored in the main memory of each OPQ

Box. The IML has a TTL of 15 minutes which is determined by the available storage capacity of

each OPQ Box.

The IML is unique in that data from the IML is never “saved” by higher levels in the hierarchy.

Instead, IML data is copied into Detections, Incidents, and Phenomena. Because of this, the size

of the IML over time is function of the number of OPQ Boxes sending data at any particular

time. Figure 5.41 shows the actual OPQ IML data growth over the deployment period. As can be

observed, the IML size is a simple function of the number of OPQ Boxes sending data.

Figure 5.41: Actual IML for OPQ

A deployment of 15 OPQ Boxes will consume about 325 MB of IML space. The changes in data

216

size are attributed to the fact that OPQ Boxes came on and offline during the period of the OPQ

deployment. At the lowest point, only 9 OPQ Boxes were sending and at the highest point 17 OPQ

Boxes were sending data. Garbage collection does not take place in the traditional sense in the

cloud at this level as the IML samples are stored on the OPQ Boxes and bounded by the available

memory that each Box can store. This plot assumes that at each Box is storing 15 minutes worth

of data in a circular buffer. The spikes in IML size are from data gaps in sensor data. Either the

sensor was powered off or there were network connectivity issues.

I will compare this result to the theoretical results in following sections.

DSN System Requirements OPQ: AML

The Aggregate Measurements Level (AML) contains summary statistics of features extracted from

the IML. OPQ contains two sub-levels within the AML (Measurements and Trends). Data within

the AML can be saved by higher levels within Laha (DL, IL, and PL). If AML data is saved, it

receives the TTL of the highest level that the data was saved by.

I examine the AML data growth for OPQ by looking at the data growth of Measurements,

Trends, and the total AML. Figure 5.42 displays the AML growth for the OPQ network as well as

statistics about garbage collection.

Figure 5.42: Actual AML for OPQ

The top panel displays the AML data growth with size in GB on the left Y-axis and the count

217

of AML items on the right Y-axis. Over a period of two and a half months the AML in OPQ has

reached a size of about 1.75 GB containing over 4 million AML items.

The middle panel displays the number of Measurements and Trends that were garbage collected

over time on the left Y-axis and the percentage of items that were garbage collected on the right

Y-axis. About 98% of all AML data was garbage collected. About 2% of all AML data is either

awaiting garbage collection or was “saved” by a higher level in the Laha hierarchy.

The bottom panel displays the number of active OPQ Boxes over time. It is possible to see how

the number of Boxes impacts the size of the AML. For example, the increase in Boxes in September

and the decrease of Boxes in mid-November have noticeable impacts on the AML storage size.

Equation 5.3 provides the best fit linear regression for the total AML size in GB with an R2

value = 0.98.

y = 1.3114190030697152e− 07 ∗ x+ 0.6987665459751351 (5.3)

This linear equation can be used to estimate the total AML data stored per OPQ Box over

a given time period x. Simply substitute x with the duration in seconds in the above equation,

subtract the offset, and then divide by the mean number of active OPQ Boxes (15). Equation 5.4

can be used to find the estimated AML size per OPQ Box over a duration of one month (28 days

or 2419200 seconds) which is close to 0.3 GB per OPQ Box per month.

y =
(1.3114190030697152e− 07 ∗ 2419200 + 0.6987665459751351)− 0.58918365

15
(5.4)

I will compare this result to the theoretical results in following sections.

DSN System Requirements OPQ: DL

The Detections Level (DL) contains metadata and data bounded by a time window that may or may

not contain signals of interest. Detections are generated by threshold based triggering algorithms.

Detections can be saved by higher levels in the Laha hierarchy (IL and PL) and will receive the

same TTL as the highest level the DL data is saved by. The DL contains metadata about the

window it examines, but the bulk of data is produced by the raw samples that get copied into the

DL when a Detection is created.

Figure 5.43 shows the DL data growth for the OPQ network over time.

218

Figure 5.43: Actual DL for OPQ

The top panel shows the size of the DL over time with the size in GB on the left Y-axis and

the count of Detections on the right Y-axis. The size of the DL for the OPQ network has grown to

close 70 GB over the period of two and half months containing a total of 160,000 Detections.

The middle panel shows the garbage collection statistics for the DL. Of note is the delayed

uptick in garbage collection until October 1, 2019. This is a direct result of the fact that Detections

have a TTL of 1 month, and thus, no Detections were garbage collected during the first month

of data collection. As of two and a half months of data collection, about 50% of all Detections

generated have been garbage collected while the other 50% are wither awaiting garbage collection

or have been saved by Incidents or Phenomena.

The bottom panel shows the number of active OPQ Boxes sending data over time.

Equation 5.5 provides the best fit linear regression for the total DL size in GB with an R2 value

= 0.90.

y = 5.0185766274104244e− 06 ∗ x+ 32.21305865745437 (5.5)

This linear equation can be used to estimate the total DL data stored per OPQ Box over a given

time period x. Simply substitute x with the duration in seconds in the above equation, subtract

the offset, and then divide by the mean number of active OPQ Boxes (15). Equation 5.6 can be

used to find the estimated DL size per OPQ Box over a duration of one month (28 days or 2419200

219

seconds) which is close to 1.68 GB per OPQ Box per month.

y =
(5.0185766274104244e− 06 ∗ 2419200 + 32.21305865745437)− 19.131860232

15
(5.6)

I will compare this result to the theoretical results in following sections.

DSN System Requirements OPQ: IL

The Incidents Level (IL) contains metadata and data relating to classified signals of interest. In-

cidents are created when a Mauka plugin classifies a signal of interest from a Detection. Incidents

can be saved by Phenomena.

Figure 5.44 shows the IL growth for the OPQ network over a period of two and a half months.

Figure 5.44: Actual IL for OPQ

The top panel shows the growth of the IL with the size in GB on the left Y-axis and the number

of Incidents on the right Y-axis. Over a period of two and a half months, the IL of OPQ has grown

to near 6GB containing over 400,000 Incidents. The update in Incidents around mid-November

is due to the fact that I performed maintenance on many of my Incident classification algorithms

and also added a slew of Incident plugins. This also caused our linear regression fit to be the least

accurate of any of the Laha levels.

220

The middle panel shows the garbage collection statistics for the IL. You will note that the GC

statistics are flat lining at 0. This is due to the fact that Incidents are given a default TTL of 1

year and this deployment has only been collecting data for 3 months.

This brings up the question, is a TTL of 1 year for Incidents too long? It is clearly not useful over

a deployment of 3 months, but DSNs utilizing Laha are expected to operate in a stable fashion for

long durations. Incidents, only being one step below Phenomena, contain a wealth of information

in the form of classified signals of interest. I believe that data that has been classified should live

for a long time duration. Since Events live for a month and Phenomena live for a 2 years, it makes

sense to me to have a TTL of 1 year for Incidents. One of the reasons I decided to simulate Laha in

terms of data storage requirements was so that I could show expected results for time periods larger

than that of the OPQ deployment. We could scale back the TTL of Incidents to 6 months, but

this would still be beyond the range of the OPQ deployment duration. Future work on Laha will

examine how altering TTLs of the various levels affect the underlying data storage characteristics.

The bottom panel shows the number of active OPQ Boxes sending data over time.

Equation 5.7 provides the best fit linear regression for the total IL size in GB with an R2 value

= 0.83.

y = 8.114350243481761e− 07 ∗ x+−1.4797678575319322 (5.7)

This linear equation can be used to estimate the total IL data stored per OPQ Box over a given

time period x. Simply substitute x with the duration in seconds in the above equation, subtract

the offset, and then divide by the mean number of active OPQ Boxes (15). Equation 5.8 can be

used to find the estimated IL size per OPQ Box over a duration of one month (28 days or 2419200

seconds) which is close to 0.3 GB per OPQ Box per month.

y =
(8.114350243481761e− 07 ∗ 2419200 +−1.4797678575319322)− 0.072925535

15
(5.8)

I will compare this result to the theoretical results in following sections.

DSN System Requirements OPQ: PL

The Phenomena Level (PL) contains groupings of Incidents with added context and predictive

analytic capabilities.

Figure 5.45 shows the the PL growth over the period of the OPQ deployment.

221

Figure 5.45: Actual PL for OPQ

Of note is the fact that the PL level was not fully implemented until the start of December. The

large spike in the PL observed at the start of January was the introduction of Future Phenomena.

It should also be noted that the Phenomena Level is quite small. This is due to the fact that

Phenomena are few and far between and also only consist of metadata.

Equation 5.9 provides the linear regression of the PL growth once Future Phenomena were

implemented.

y = 1.6563287380621955e− 06 ∗ x+−0.1865557652111356 (5.9)

These results will be compared to the theoretical results in future sections.

DSN System Requirements OPQ

I will now examine the results of combining all Laha levels within OPQ. Figure 5.46 provides the

results of data collection for the entire OPQ network over a period of 2 and a half months.

222

Figure 5.46: Actual Laha for OPQ

First, please note that the Y-axis is using a log scale in order to better display the data growth

of some of the smaller Laha levels. Next, we observe that the size of the entire network is just

under 100 GB over a period of two and a half months with an average of 15 OPQ Boxes.

We can observe that the IML level converges to the smallest of the levels due to its strict 15

minute TTL.

The IL starts out small, but as Incidents are identified, the IL surpasses the IML at about 1

month and surpasses the AML in size at about 2 months. The Detections level is the largest and

this makes sense since we treat Detections relatively cheaply and they contain windows of data that

are generally larger than the signal of interest if there even is a signal of interest at all.

Equation 5.10 provides the best fit linear regression for the total Laha size in GB with an R2

value = 0.93.

y = 5.965634579947276e− 06 ∗ x+ 31.761503174631905 (5.10)

This linear equation can be used to estimate the total Laha data stored per OPQ Box over

a given time period x. Simply substitute x with the duration in seconds in the above equation,

subtract the offset, and then divide by the mean number of active OPQ Boxes (15). Equation 5.11

can be used to find the estimated Laha size per OPQ Box over a duration of one month (28 days

223

or 2419200 seconds) which is close to 1.74 GB per OPQ Box per month.

y =
(5.965634579947276e− 06 ∗ 2419200 + 31.761503174631905)− 20.031569417

15
(5.11)

I will compare this result to the theoretical results in following sections.

DSN System Requirements OPQ: Comparing Results to Estimates

Now that I have shown the results for the actual DSN storage requirements, I will next compare

these results to the estimated storage requirements with and without TTL.

Let us first compare the results to the estimated storage requirements without TTL found in

Section 4.3.3. This might feel a bit contrived, but the purpose of these results is to show how OPQ

compares to a similar system that would collect everything.

One interesting thing to note is that I expected the estimated values to be much higher than the

actual values due to the fact that I was not including TTL explicitly anywhere in the estimations. It

turns out this is not always the case. The reason for this is that the estimated values are computed

by multiplying the amount of time the system has been running with the data rate obtained from

the OPQ database for Events, Incidents, and Phenomena, and on the surface, it does not appear

that TTL is being used in these estimations. However, this is not exactly the case. The data rate

parameters obtained from the OPQ database implicitly have the TTL built in. That is because I

measure the data rate over all available Events, Incidents, and Phenomena, but this data rate does

not include Incidents, Events, or Phenomena that have been garbage collected! Unfortunately, I

do not have detailed metrics on data that was garbage collected (only counts). Any future DSN

utilizing Laha should consider recording detailed metrics about data that was garbage collected

(duration, data stored, etc).

This really only affects Detections, Incidents, and Phenomena which use estimated database

parameters. Samples, Measurements, and Trends are not affected because they are computed

directly from the time length without using any estimated database parameters.

The end result of this is that it turns out that the method I use to estimate Events, Incidents,

and Phenomena without TTL pretty accurately portray the size of the actual data with TTL.

There was already data in the database before we started collected enhanced metrics. This is

true for the AML, DL, IL, and PL. In order to accurately compare data growths from zero, the first

value at each level is subtracted from the entire data set at each level. This essentially “forces” the

data set to start at 0 so that we can compare it directly to the estimates.

IML Versus Estimated Growth The Instantaneous Measurements Level (IML) consists of raw

samples from sensors. Figure 5.47 shows the actual IML vs unbounded IML.

224

Figure 5.47: Actual IML vs Unbounded IML for OPQ

This plot is a little uninteresting. The difference is lost by the shear imbalance between mag-

nitudes. With the IML producing the most data consisting of raw samples, without a TTL of 15

minutes the unbounded IML grows very quickly. By having bounds on the data, OPQ saves over

2.5 TB worth of data storage.

AML Versus Estimated Growth Figure 5.48 shows the actual AML vs unbounded AML. The

AML level contains aggregate Measurements which are rolled up summary statistics extracted from

the IML.

225

Figure 5.48: Actual AML vs Unbounded AML for OPQ

This data was not affected by the implicit TTL parameter and portrays accurate unbounded

versus bounded growth. We can see that over the same time period, AML with TTL saved us

about 17.5 GB worth of data versus a store everything approach.

DL Versus Estimated Growth Figure 5.49 shows the actual DL vs unbounded DL. The De-

tection Level contains metadata and data bounded by a window which may or may not include

signals of interest.

226

Figure 5.49: Actual DL vs Unbounded DL for OPQ

This data was affected by the implicit TTL parameter and does not portray accurate unbounded

versus bounded growth. Instead, the implicit TTL parameter models are actual growth pretty

closely and the actual data is about 20 GB larger than the estimated data growth.

IL Versus Estimated Growth Figure 5.50 shows the actual IL vs unbounded IL. The Incident

Level contains metadata and data over window that contains classified signals of interest.

227

Figure 5.50: Actual IL vs Unbounded IL for OPQ

This data was affected by the implicit TTL parameter and does not portray accurate unbounded

versus bounded growth. Instead, we can see that the actual size of the IL tracks pretty closely to

the estimated maximum bounds. At the end of the data collection period, OPQ collected about

4GB less worth of data than what was estimated.

PL Versus Estimated Growth Figure 5.51 shows the actual PL vs unbounded PL.

228

Figure 5.51: Actual PL vs Estimated IL for OPQ

We can observe that early on, the actual and estimated values do not match well. This was

caused by the fact the Future Phenomena were fully implemented until early January. The esti-

mated data trends very closely to the actual PL data size by the end of the deployment with a

difference near 0 MB.

Laha Versus Estimated Growth Finally, I examine the total size of Laha and compare it to

the estimated bounds of Laha without TTL. This takes into account all levels within the Laha

hierarchy.

Figure 5.52 compares the actual bounds of the entire network to the estimated bounds.

229

Figure 5.52: Actual Laha vs Unbounded Laha for OPQ

This result is a little unsatisfying. The data growth of the IML is pretty much the only feature

evident in this plot. To better understand the growth of the entire system, I removed the IML as

shown in Figure 5.53.

230

Figure 5.53: Actual Laha vs Unbounded Laha for OPQ (No IML)

Over a time period of 2 and a half months, the OPQ network stored close to 15 GB more data

as compared to the estimation (not including the IML which saved OPQ about 2.5 TB of data).

This difference is mainly caused by the difference between the actual DL and IL levels versus the

estimated DL and IL levels. If we include the IML, this provides a total data savings of about

97.6%. Of course, I would expect the data savings to be greater if I had actual metrics for the DL,

IL and PL that did not have a built-in implicit TTL parameter. Even with the built-in parameter,

the savings gained from the AML alone is significant.

DSN System Requirements OPQ: Comparing Results to Simulated Data

Next I will compare the results gathered from the OPQ deployment to the simulated bounds found

in Section 4.3.3.

Similar to the previous comparisons, I will offset the actual data to “force” the data to start

from zero.

The simulated data had to be aligned with the collected metrics to perform this evaluation.

The alignment works by binning all relevant timestamps to the nearest minute between the two

data series.

IML Versus Simulated Growth The Instantaneous Measurements Level (IML) contains raw

samples from sensors. Figure 5.54 shows the actual IML vs estimated IML.

231

Figure 5.54: Actual IML vs Simulation IML for OPQ

The simulation tracks the actual data pretty closely with a difference hovering around 0 MB.

The simulation assumes that 15 sensors are always sending, whereas the actual data fluctuates with

the number of active sensors.

AML Versus Simulated Growth The Aggregate Measurements Level (AML) contains rolled

up summary statistics of selected features generated from IML data. Figure 5.55 shows the actual

AML vs estimated AML.

232

Figure 5.55: Actual AML vs Simulation AML for OPQ

The simulated AML data trends closely with the actual data. There is a slight underestimation

early on, but converges to close to 0 GB by the end of the data collection.

DL Versus Simulated Growth The Detection Level (DL) contains metadata and a window

of raw data that may or may not include signals of interest. Figure 5.56 shows the actual DL vs

estimated DL.

233

Figure 5.56: Actual DL vs Simulation DL for OPQ

Although the simulated data has a similar shape to the actual data for the DL, there is a large

offset between the simulation and the actual data. There are several reasons for this offset. The

parameters passed into the simulation have somewhat large variances. The leading issue though, is

that the simulation assumes that each device produces the same amount of Detections. In practice,

certain boxes produce many Detections while others produce relatively few Detections. These

differences can likely be attributed to the offset. On the bright side, at least the actual data is less

than the simulated data and not the other way around!

OPQ saves near 150 GB of data as compared to the simulation.

IL Versus Simulated Growth The Incidents Level (IL) contains metadata and a window of

data that contains classified signals of interest. Figure 5.57 shows the actual IL vs estimated IL.

234

Figure 5.57: Actual IL vs Simulation IL for OPQ

The simulated IL data is better than the simulated DL data, but still displays an offset, likely

for the same reasons as the DL. OPQ saves 20 GB in the IL compared to the simulated IL.

PL Versus Simulated Growth The Phenomena Level (PL) provides context on top of Incidents

and predictive analytics capabilities.

Figure 5.58 shows the actual PL vs simulated PL.

235

Figure 5.58: Actual PL vs Simulation PL for OPQ

Here, we can observe that the actual PL trends pretty closely to the simulated PL. This is to

be expected due to the fact that there are a small number of Phenomena and the OPQ deployment

has not been running long enough (2 years) to make full use of the TTL of Phenomena.

Laha Versus Simulated Growth Figure 5.59 shows the actual Laha vs estimated Laha.

The large offsets in the simulated DL and IL data create the overall trends in this plot. The

shapes of the trends are similar but the offset shows that OPQ saves near 150 GB of data over the

same time period as the simulation.

236

Figure 5.59: Actual Laha vs Simulation Laha for OPQ

Discussion on Estimation Versus Simulation I compared actual data for each level in the

Laha hierarchy to both estimated bounds and simulated bounds. Both approaches show promising

results for certain levels. The estimated bounds are better suited for examining the DL, IL, and

PL whereas the simulated bounds are better for examining the IML and AML. The estimated

bounds include an implicit TTL parameter where the simulated bounds actually performs TTL in

the simulation.

One thing that the simulation provides is the ability to tune many of the underlying simulation

parameters. The estimated data provides parameters scraped from the database and if a fairly

simply estimation. The simulation allows individual parameters to be tuned providing the means

to alter any part of a simulated Laha DSN. This is something that is not easily accomplished only

using estimation methods.

Future work should look at expanding the collection of parameters saved when items are garbage

collected. This would allow better estimated bounds without TTL and provide better parameters

to the simulation.

Both approaches showed significant data savings when utilizing the data management techniques

within Laha.

237

DSN System Requirements OPQ: CPU, Memory, and Disk Utilization

We collected CPU, memory, and disk utilization during the deployment of the OPQ network. It is

useful to first discuss the details of the system that the OPQ network is running on.

Makai, Mauka, View, MongoDB, and Health are all running on the same virtual server hosted

by the University’s Information Technology Services. The server is running Red Hat Enterprise

Linux Server release 7.7 (Maipo). Due to a configuration error, the server only ran with a single

virtual CPU up until October 28, 2019. After that time period, a second virtual CPU was added.

Each virtual CPU is an Intel Xeon E5-2687W v3 running at 3.10 GHz. The system has 8 GB of

main memory and 8 GB of swap space. The system has 1 TB of hard disk storage.

These system statistics are for the entire virtual server and include loads of all virtualized OPQ

services. Mauka is certainly doing the most work of any of the virtualized services, but it should

be noted that these statistics also include overhead incurred from other OPQ and OS services.

It should be noted that I attempted to collect the same statistics from the Lokahi network, but

due to system requirements and a complicated distributed architecture, we were not able to collect

metrics for the entire system. For example, many of Lokahi’s services use specialized Amazon Web

Services (AWS) services which do not expose similar metrics that are exposed by OPQ. For that

reason, we will only examine the OPQ network in detail.

Figure 5.60 shows the OPQ system resource utilization over a period of two and a half months.

Figure 5.60: System Utilization for OPQ

238

You will note gaps in the data in early and mid October. These were caused by a mix-up in

deployed branches where one of the branches did not have collection of system statistics enabled.

The top panel shows the minimum, mean, and maximum CPU load. Each triplet of min,

mean, and max values are aggregated over 30 sample points. So even though the CPU hits 100%

utilization quite often, the mean of the CPU utilization is much lower, rarely rising over 40%. A

slight decrease (5%) in CPU load can be observed when the second virtual CPU was added to the

system.

I expect that we could double the amount of deployed sensors to 30 and still see mean CPU

utilization less than 80%. Beyond that would require either more powerful hardware or distributing

OPQ services over multiple servers.

The second panel shows memory utilization. OPQ utilizes on average close to 75% of the

available memory. I dug a little bit deeper into how the memory was being utilized and found a

perhaps unsurprising result. Table 5.19 shows the breakdown of largest memory utilization on our

system.

Process % Memory

MongoDB 51

OPQ Mauka 8

OPQ View .8

OPQ Makai .3

Docker .3

OPQ Box Updater .1

JournalD .1

Table 5.19: OPQ Large Memory Utilization

MongoDB uses over half of our available memory! This should be somewhat unsurprising

because MongoDB aggressively caches data in-memory for efficient queries. No matter how much

memory is on our system, MongoDB will use a large chunk of it. All of the OPQ Mauka processes

combined only add up to about 8% memory utilization with 15 sensors. I estimate that on current

hardware, Mauka could handle up to about 100 sensors and still remain within 80% memory

utilization (of course this would have an adverse affect on MongoDB caching).

The third panel shows disk usage over time. As of about two and a half months into data

collection, the server is storing about 130 GB worth of data. One interesting feature of this plot

are the periodic spikes. The periodic spikes are caused by daily database backups. Every day, a

backup of the database is performed, compressed, and written to disk. It is then uploaded to cloud

storage and on successful upload, deleted locally. There is a large gap of these spike near the end

of October and beginning of November. This gap is the result of a Docker bug that inhibited our

239

system from performing daily backups. I changed the backup routine to use a local MongoDB

client rather than one provided by Docker and the daily backups resumed.

The bottom panel shows the number of active OPQ Boxes sending over time. There does

not appear to be a large correlation between the number of boxes sending and system resource

utilization. This is likely due to the fact that the standard deviation between the number of active

OPQ Boxes is quite small (σ = 1.63).

5.4.2 DSN System Requirements: Lokahi

The requirements of the Lokahi network stipulate that all data be saved. This is broadly due to the

fact that many of our collaborators request data long after it would have been garbage collected

by TTL. Because of this requirement, TTL was not implemented for the Lokahi network. I believe

this is a feature, not a bug. This gave me the opportunity to compare a network that does utilize

TTL (OPQ) to a network that does not utilize TTL (Lokahi). Evaluations for these results are

provided in Section 4.3.3 and Section 4.3.3.

I have shown in the previous section the data savings OPQ experienced against estimated data

growth and simulated data growth. In this section, I will show the amount of data actually stored in

Lokahi versus how much data could have been saved using TTL. This will compare the actual data

collected from the Lokahi network to the estimated and simulated data found in the Evaluation

chapter.

Data was scraped from the Lokahi servers over the same time period as the OPQ data, October

1 to December 15, 2019. The first sample of all data sets are subtracted from subsequent data in

order to “zero out” the data at the origin and show data growth from zero rather than data growth

from an unknown previous point.

DSN System Requirements Lokahi: IML

The Instantaneous Measurements Level (IML) contains raw samples collected by sensors. Because

Lokahi does not utilize a TTL, the IML data is stored indefinitely. Here, I only consider IML data

collected by microphone sensors which is the focus of the Lokahi deployment.

Figure 5.61 shows the number of active Lokahi sensors at different sampling rates over the

period of the deployment.

240

Figure 5.61: Active Lokahi Sensors

The above Figure shows the number of active Lokahi sensors at different sampling rates. Unlike

OPQ, the Lokahi network provides sensors that can be configured to sample at 80, 800, or 8000 Hz

depending on the target signal of interest. Differences in sampling rates affect both the IML and

the AML. IML data is affected because more samples require more storage. The AML is affected

because Trend rates are dependent on the sampling rate. At any one time, the Lokahi network

observed a mean of close to 100 active sensors. Sensors recording at 800 Hz are most prevalent,

followed by sensors at 80 Hz, and finally sensors at 8000 Hz.

Figure 5.62 shows the actual data growth of the IML over the course of the Lokahi deployment.

241

Figure 5.62: IML Growth: Lokahi

A linear regression has been fitted to the total IML growth size and is provided by Equation 5.12.

y = 0.0002934630429487022 ∗ x+−460888.760172118 (5.12)

Most of the IML data is made up of 800 Hz sampled data. This is unsurprising since most

active sensors are sampling at 800 Hz. Over a period of two and a half months, the total IML size

reaches near 2 TB.

Next, I will examine how the actual data compares to the estimated data and the simulated

data found in the Evaluation chapter.

Figure 5.63 compares the estimated IML data to the actual IML data.

242

Figure 5.63: IML Growth: Estimated vs Actual

As can be observed, the estimated IML data ends up being close to 1 TB larger than that of

the actual IML data. This is attributed to the fact that the estimated data only works with the

mean number of active sensors whereas the actual data uses the actual number of active sensors.

Figure 5.64 compares the simulated IML data to the actual IML data.

243

Figure 5.64: IML Growth: Simulated vs Actual

Here, the simulated data shows data savings of near 2 TB. This makes sense because the

simulated data utilizes TTL whereas the actual Lokahi network does not. This provides evidence

that TTL within the IML provides for significant data savings.

DSN System Requirements Lokahi: AML

The Aggregate Measurements Level (AML) stores summary statistics from feature extracted streams

and metadata relating to the data streams. In Lokahi, the AML only contains Trends whereas OPQ

contains both Measurements and Trends. Trend rates vary depending on IML sampling rate.

Figure 5.65 shows the actual AML growth of the Lokahi network over its deployment.

244

Figure 5.65: AML Growth: Lokahi

Equation 5.13 provides the linear regression found for the total AML data growth.

y = 5.309751501193485e− 06 ∗ x+−8339.047270943533 (5.13)

Over the course of the Lokahi deployment, the total size of the AML grew to just over 35 GB.

Next, I will examine how the actual data compares to the estimated data and the simulated

data found in the Evaluation chapter.

Figure 5.66 shows the estimated AML versus the actual AML.

245

Figure 5.66: AML Growth: Estimated vs Actual

Actual AML data ends up being about 15 GB smaller that the estimated data. Again, this is

likely caused by the fact that the estimated data uses the mean number of active sensors while the

actual data uses the actual number of active sensors for any period of time.

Figure 5.67 shows the simulated AML compared to the actual AML.

246

Figure 5.67: AML Growth: Simulated vs Actual

Simulated data provides upwards of 20 GB in data savings utilizing TTL compared to the actual

AML data which does not utilize TTL. This provides evidence that a TTL approach could provide

significant data savings for the AML.

DSN System Requirements Lokahi: DL

The Detections Level (DL) is responsible for bounding data with a window that may or may not

contain signals of interest. Figure 5.68 shows the actual growth of the DL within Lokahi over the

deployment duration.

247

Figure 5.68: Lokahi DL Growth

Equation 5.14 provides the linear regression found for the total DL data growth.

y = 4.241184190694421e− 07 ∗ x+−0.29152838226742694 (5.14)

Over the deployment duration, the DL has grown over 2.5 GB with over 200 Events.

Next I will compare the actual DL data growth to the estimated and simulated data growth

from the Evaluation chapter. Figure 5.69 compares the actual Lokahi DL to the estimated DL.

248

Figure 5.69: Lokahi DL Growth vs Estimated Growth

The actual DL growth matches the estimated DL growth almost perfectly. The difference

between the two trends towards 0 GB.

Figure 5.70 compares the simulated DL to the actual DL.

249

Figure 5.70: Lokahi DL Growth vs Simulated Growth

The simulated DL is about 1.5 GB smaller than the actual DL. This is due to the simulated

DL utilizing TTL while the actual DL for Lokahi does not. This provides evidence that TTL based

approaches can provide data savings within the DL.

DSN System Requirements Lokahi: IL

The Incidents Level (IL) is responsible for bounding data with a window that contains classified

signals of interest. Figure 5.71 shows the actual growth of the IL within Lokahi over the deployment

duration.

250

Figure 5.71: Lokahi IL Growth

Equation 5.15 provides the linear regression found for the total IL data growth.

y = 1.982441768799792e− 08 ∗ x+−0.02980347263345723 (5.15)

Over the deployment duration, the IL has grown to about 0.125 GB consisting of 6 Incidents.

Incidents are much more rare in Lokahi as compared to OPQ.

Next I will compare the actual IL data growth to the estimated and simulated data growth

from the Evaluation chapter. Figure 5.72 compares the actual Lokahi IL to the estimated IL.

251

Figure 5.72: Lokahi IL Growth vs Estimated Growth

The actual IL trends closely with the estimated IL.

Figure 5.73 compares the simulated IL to the actual IL.

252

Figure 5.73: Lokahi IL Growth vs Simulated Growth

The simulated IL is just slightly smaller than the actual IL. Over this time period, the simulated

IL does not have a good opportunity to show off the data savings provided by TTL. I suspect that

if the deployment were long enough, we would see similar simulated data savings to what was

displayed for the IML, AML, and DL. Although the simulated TTL is not in use here, Laha is

designed to work for extremely long durations. In those scenarios, the larger TTL of Incidents will

come into play.

DSN System Requirements Lokahi: PL

The Phenomena Level (PL) is responsible for providing additional context on top of Incidents and

providing predictive analytic capabilities.

Figure 5.74 shows the actual PL data growth for the Lokahi network over the deployment period.

253

Figure 5.74: Lokahi PL Growth

You will note that the size of the PL for Lokahi is quite small. This is caused by the fact that

Phenomena are few and far between and the fact that Phenomena only consist of metadata.

Equation 5.16 provides the linear regression found for the total PL data growth.

y = 9.231608030010472e− 07 ∗ x+ 3.634272996721129 (5.16)

Next, let us examine the actual size of the PL versus the estimated size of the PL found in the

Evaluation chapter. Figure shows the actual PL versus the estimated PL.

254

Figure 5.75: Lokahi PL Growth vs Estimated PL Growth

The actual size of the PL is less than the estimated size of the PL by about 25 kB. Since

Phenomena are so few in this network, it is difficult to say if this difference is significant or not.

When attempting to compare Lokahi’s PL to the simulated PL, I ran into an issue where

the low rate of PL generation within the simulation meant that I could not directly compare the

actual growth to the simulated growth. That is, in the same amount of time that Phenomena

were generated by Lokahi, the simulation didn’t produce any Phenomena. This is to be somewhat

expected since the rate of Phenomena generation within Lokahi is extremely low (only 0.01 bytes

of Phenomena data are generated per second on average).

Thus, the results of comparing the actual PL to the simulated PL is that the actual PL is about

23 kB larger than the simulated PL of 0 kB.

DSN System Requirements Lokahi: Laha

Figure 5.76 shows the total size of all levels collected from actual data from the Lokahi network.

255

Figure 5.76: Lokahi Laha Growth

The total size of the Lokahi deployment reaches close to 2 TB over two and a half months. This

is mostly due to the large IML that this network produces. Next I will compare the total size of

Laha to the estimated and simulated results from the Evaluation chapter.

Figure 5.77 shows actual Laha growth compared to estimated Laha growth.

256

Figure 5.77: Lokahi Laha Growth vs Estimated Laha Growth

The actual data growth of Laha is close to 1 TB smaller than that of the estimated data growth.

This should come as no surprise since these match estimated results for all of the sub-levels that

make up the Laha hierarchy.

Figure 5.78 shows actual Laha growth versus simulated Laha growth.

257

Figure 5.78: Lokahi Laha Growth vs Simulated Laha Growth

The estimated data growth of Laha for Lokahi ends at close to 2 TB smaller that the actual

data growth. As discussed for the previous levels, this is due to the fact that Lokahi does not

implement TTL whereas the simulated does implement TTL. This provides evidence that a TTL

approach would be useful in networks similar to Lokahi to achieve substantial data savings.

In this section, I have compared the actual amount of data collected to estimated data and

simulated data outlined in the Evaluation chapter. The estimated data tends to be slightly larger

than the actual data for all instances. This difference was caused by errors in the estimations due

to utilizing the mean number of active sensors rather than the actual number of active sensors.

The simulated results showed that a TTL approach is useful in providing a total data savings of

close to 96%.

5.5 Results of Tertiary Goals

In Section 1.5.4, I provided tertiary goals for the Laha framework. The evaluation of these tertiary

goals were provided in Section 4.4. In general, two out of the three tertiary goals were implemented

to some degree. Not all of the results mentioned in the Evaluation chapter for the tertiary goals

were fulfilled. This section examines to what extent the tertiary goals were fulfilled and discusses

how these results might be improved.

258

5.5.1 Results of Adaptive Optimizations for Triggering

In the previous discussion on Future Phenomena, I showed how Future Phenomena have the ability

to modify the Measurement and Trend rates for OPQ Boxes. These rates are increased over the

duration that a Future Phenomena signal is predicted. The Measurement rate is increased from

one Measurement per 60 cycles to one Measurement per 10 cycles. Once the Future Phenomena

duration ends, the rates are adjusted back to default values.

This increase in fidelity provides triggering algorithms with more data to work with and provides

a smaller window (16 of a second compared to 1 second) in which deviations can be identified. This

increases the network’s chance of observing Events and Incidents that may have originally been

missed.

The increased fidelity during Future Phenomena adds a small overhead cost in terms of band-

width and storage. As shown in the Evaluation of Tiered Management of Big Data chapter, the

mean size of a Measurement is 145 bytes. The added overhead can be found by Equation 5.17 where

Pi is a given Future Phenomena and D is a function that returns the duration of the Phenomena

in seconds.

added overhead bytes =

PN∑
i=1

D(Pi) ∗ 145 ∗ 6 (5.17)

Over a period of one week, 772 Future Phenomena were created for four OPQ Boxes. These

contributed to an increase of 130.51 MB of data transferred from OPQ Boxes under Future Phenom-

ena. Considering that four OPQ Boxes transfer 365.50 MB in Measurements and Trends without

Future Phenomena, this is about a 35% increase in data transfer for OPQ Boxes utilizing Future

Phenomena for adaptive triggering optimizations.

These optimizations were designed to increase fidelity and reduce window size, providing trig-

gering algorithms the chance to better identify Events. Future directions should include looking

to information theory for ideas on how to decrease fidelity while still maintaining a high signal-to-

noise ratio. Another future direction should experiment with modifying the sampling rates of the

sensors themselves to determine if possible to decreases bandwidth and storage requirements while

increasing signal-to-noise.

5.5.2 Results of Adaptive Optimizations for Detection and Classification

In the previous discussion on Future Phenomena, I showed that Future Phenomena are capable of

optimizing the classification of Events by dynamically modifying the feature thresholds used for

detecting Events. This is in contrast to what I claimed I would do in the Evaluation section which

stated that I would change the window sizes to dynamically increase or decrease signal-to-noise.

I decided to switch directions with optimizations for Events because the time windows for Events

and Incidents are already well characterized and I do not believe modifying these windows would

259

provide any additional benefits. For instance, Event windows are characterized by the times that

thresholds crossed from nominal into non-nominal and back. We could increase the size of the Event

window to provide a buffer of data on either end, but Event windows are already large enough to

provide valid Incidents. Incident windows are strictly defined by the start and stop of the classified

signal. If Incident windows were smaller, we would miss data that is important to characterizing

the Incident. The Incident window does not need to be increased, because the Incident data is

a subset of the Event data. The Event waveform will live for as long as the Incident, making it

possible to look up data around the Incident from the Event that generated it.

I decided to dynamically alter detection thresholds in an attempt to provide Event detection

with the ability to detect sub-threshold Events predicted by Future Phenomena that would have

otherwise not been detected.

As discussed in the Results for Future Phenomena, out of 210 Future Phenomena, 37 Events

were sub-threshold and would not have been identified without these adaptive optimizations.

Future directions should look at providing a signal-to-noise parameter that is used to dynami-

cally adjust detection thresholds based on the required signal compared to the noise of a particular

data stream.

5.5.3 Results of Model of Underlying Sensor Field Topology

I had difficulties finding a model that accurately predicts the underlying sensor field topology and

as such do not have any results for this tertiary goal. I attempted to use voltage sags and swells

because they tend to show the largest differences in readings between Boxes at any one time. This

is compared to THD and frequency which tend to track more similarly between Boxes. I expected

the signal caused by voltage fluctuations to attenuate as a function of the distance from the source

signal. This in conjunction with a map of the UH micro-grid provided the basis for me to explore

this hypothesis.

I attempted to find the amount of “hops” from each OPQ Box to every other OPQ Box on the

UHM micro-grid. I did this by counting the number of buildings each main electrical line went

through in order to go from an OPQ Box to every other OPQ Box. The UHM micro-grid is serviced

by two sub-stations, one on upper campus and one on lower campus. This complicated counting the

hops because different electrical routes are taken dependent on the substation that was servicing

the micro-grid at any one time. I do not have any information on when each substation was active.

I compared the number of hops to the amount of attenuation observed in voltage signals and was

not able to identify any clear correlation. For certain pairs of sensors, the data made sense, but the

correlation broke down for the vast majority of voltage signals analyzed using this method leading

me to believe that the small set of data points that did make sense are likely just coincidence.

There are also a lot of electrical switches, filters, and transformers that exist between each

building and sometimes within buildings that further complicate counting hops. Also, just because

260

a sensor observes a large voltage signal that attenuates as it reaches other sensors does not mean

that the source signal originated at the sensor with the largest signal. It could have originated in

a near by building that does not have a OPQ Box inside of it.

I think one of the largest issues with this tertiary goal is my lack of knowledge relating to

electrical engineering. I simply do not understand the movement of electricity within a grid well

enough to be able to model the topology of the grid correctly only based off of voltage signals and

a map of the grid.

Although the OPQ Box deployment attempts to cover large parts of the campus, a larger

deployment would make it much easier to follow signals as they propagate through the micro-grid.

I suspect that a Box per building would almost make this a trivial problem, even with my lack of

knowledge in the electrical engineering domain.

Multiple commercial software packages provide electrical grid simulation. It would be interesting

to attempt to convert provided blueprints of the UHM micro-grid into a power grid simulation. With

the ability to control signal sources, amplitudes, and locations of simulated sensors, I suspect this

would provide an enlightening view of how power signals propagate through a grid. This could

provide a fascinating future study on how and where renewable energy sources affect PQ based on

the topology of the grid.

5.5.4 Summary of Tertiary Goals

I detailed 3 tertiary goals in the Evaluation chapter including adaptive optimizations of triggering,

adaptive optimizations of detections and classification, and attempting to model the topology of

a sensor field. I showed that adaptive triggering optimizations occur in the form of modifying

data rates from OPQ Boxes. I showed that adaptive detection optimizations occur in the form of

modifying detection thresholds. I was not able to provide a valid result for modeling the topology

of the sensing field, but instead provides discussions on those results could be improved.

5.6 Summary of Results

I designed, built, and deployed two Laha compatible DSNs. The Lokahi network collects signals

in the infrasound range and is able to identify a large variety of source modalities such as rocket

launches, earthquakes, atmospheric entries, storms, and explosions. The OPQ network was designed

to detect anomalous signals in PQ data such as frequency sags and swells, voltage sags and swells,

transients, and excessive THD.

I evaluated these DSNs as described in the Evaluation chapter.

First, I showed results comparing ground truth data to the OPQ network. I showed comparisons

for collected metrics such a frequency, voltage, and THD, and I also provided results that compare

how well Events and Incidents match what was observed by ground truth sensors. I found that

261

most of the OPQ network accurately track the ground truth data with the largest deviations taking

place within frequency Incidents.

Next, I provided evidence to show how well Lokahi tracks ground truth data. I used results from

Asmar’s dissertation to show that infrasound signals are able to be detected with mobile sensors

within accordance of the International Monitoring System.

I then provided results showing that the generality of Laha framework allows it to be used

in multiple domains all the while fulfilling the requirements of those domains. Within the OPQ

network, I showed examples of classified Incidents for common PQ issues and the ability to detect

local, semi-global, and global signals-of-interest. Within the Lokahi network I provided Incidents

that showcase the wide variety of source signal modalities that the network is able to accurately

detect. Finally, I provided other tangible claims showing the usefulness and generality of the Lokahi

network.

I then provided an in-depth discussion on the types of DSNs that the Laha framework would

be suitable followed by a discussion on the Laha level hierarchy.

Next, I provided evidence that the system is able to convert primitive data into actionable

insights by discussing the transformations of data at each level in the Laha hierarchy and examining

the results of Phenomena which directly provide actionable insights. I examined each Phenomena

is detail and discussed what value it adds and how it is able to optimize the underlying system.

Then, I provided results for tiered management of big data which focused on determining data

storage requirements and system requirements in systems with TTL and without TTL. I compared

results scraped from the data to estimations and simulations that were designed in the Evaluation

chapter. I showed that Laha is able to reduce storage and computational requirements by removing

noise from the system using garbage collection.

Finally, I provided results of the tertiary goals stated in the Evaluation chapter. I showed that

adaptive optimizations of both triggering and detections take place and help to further improve

the system’s accuracy.

These items provide evidence that the Laha framework is a generally useful framework for

distributed sensor networks in select domains, providing data storage management, actionable

insights, and self-optimizing capabilities.

262

CHAPTER 6
CONCLUSIONS

This dissertation presented the Laha abstract distributed sensor network framework.

Chapter 1 introduced the Laha framework (Section 1.4) and the main problems that the Laha

Framework aims to solve, namely the conversion of primitive sensor data into actionable insights

(Section 1.1) and the management of Big Data in relation to DSNs (Section 1.2). Traditional

approaches to DSN optimization were briefly examined (Section 1.3). This chapter also provided

the major claims of the Laha framework (Section 1.5) as well as the major contributions to the

field of DSNs (Section 1.6).

Chapter 2 examined related work with an emphasis on Big Data and distributed sensor net-

works (Section 2.1), DSN Big Data management (Section 2.2), predictive analytics and forecasting

for DSNs (Section 2.3), topology and localization (Section 2.4), and triggering optimizations (Sec-

tion 2.5).

Chapter 3 provided the design details of the Laha framework as well as the design details for the

Lokahi and OPQ Laha-compatible reference networks. This chapter included the design of the Laha

hierarchy for DSN Big Data Management (Section 3.1), the design of Phenomena (Section 3.2),

design of Laha Actors (Section 3.3), design of the OPQ reference network (Section 3.4), and the

design of the Lokahi reference network (Section 3.5).

Chapter 4 provided evaluation techniques for determining if the Laha framework is able to meet

the goals set in the Introduction chapter. In particular, this chapter examined deployment plans for

the OPQ and Lokahi networks (Section 4.1), data validation strategies (Section 4.2), the evaluation

of determining if Laha meets the goals stated in the Introduction chapter (Section 4.3), and a set

of tertiary goals for evaluation (Section 4.4).

Chapter 5 provided evidence and results from the Lokahi and OPQ networks that were used

to give credence to the goals and contributions outlined in the Introduction chapter. Results were

provided for data validation (Section 5.1), the generality of the Laha framework (Section 5.2), the

ability to convert primitive sensor data into actionable insights (through the Laha level hierarchy

and Phenomena (Section 5.3)), tiered Big Data management (Section 5.4), and results for the

provided tertiary goals (Section 5.5).

The results showed that Laha is a general framework that can be applied to multiple DSN

domains. I showed in the results section that both the OPQ and Lokahi networks were able to meet

the stated goals of those networks. In particular, the OPQ network was able to identify distributed

PQ signals consisting of transient, voltage, and frequency deviations while the Lokahi network was

able to identify infrasonic signals of interest from multiple sources including storms, explosions,

and atmospheric disturbances. I showed that the Laha framework is able to convert primitive data

into actionable insights through its level hierarchy and also through Phenomena which provide

263

groupings of Incidents and predictive analytic capabilities. I showed that the Laha level hierarchy

in conjunction with TTL provides enhanced data management in the form of reducing sensor noise

and network resource consumption requirements. Results for TTL of data showed an overall data

reduction of close to 96%. I showed that Phenomena are able to optimize lower levels of the

Laha hierarchy which increase its ability to detect sub-threshold Events, detect periodic signals of

interest, predict future signals of interest, and reduce data storage requirements which form the

basis of Laha’s tertiary goals.

6.1 Future Directions

The longer I have worked with these networks, the more I have realized that they could be expanded

in a multitude of ways.

6.1.1 Machine Learning

I think the lowest hanging fruit for Laha is to implement an unsupervised machine learning layer.

I believe machine learning could be used for triggering, detection, and classification of signals of

interest. This is an active area of research within the Lokahi network as we are currently planning

to augment our architecture with machine learning. The goals for machine learning within Lokahi

are to implement robust detection algorithms using a training set of labeled data collected at our

lab and at various national laboratories.

I also believe supervised machine learning could be useful at the Phenomena level, providing

models for predicting Events and Incidents and identifying groupings of data. It could be useful to

augment Annotation Phenomena with the ability to automatically create new Annotations from

past data.

6.1.2 Modifying Windows and Thresholds

To improve the process of creating Events and Incidents, I believe it would be useful to experiment

with changing window sizes used to compute low level metrics such as Frequency, THD, and Voltage

during temporal network analysis. As shown in the ground truth analysis, the current implemen-

tation uses cycle sized windows for computing THD and frequency, but has a cost of added noise.

These window sizes could be modified to find an optimum length that minimizes noise, but still

accurately reflects the data. By minimizing noise, the system is able to store less data while maxi-

mizing system resource allocation for the detection and analysis of signals of interest. As networks

scale, this problem becomes more pronounced and noise reduction becomes even more relevant.

This is especially true for resource constrained networks which may not have the resources required

for storing and filtering data with a low signal-to-noise ratio.

264

6.1.3 More Simulations

Although I created a simulation to simulate Laha itself, I believe it would be useful to simulate

the power grid as well. Multiple commercial options exist that provide grid simulations. It could

be useful to create a copy of the UHM micro-grid in simulation to help fill in some of the missing

puzzle pieces about sensor topology and how signals travel through the UHM micro-grid. This

would also afford us the opportunity to simulate PQ signals at will instead of waiting for them to

arrive. Simulations could allow researchers to more accurately model the sensing field topology.

Simulations could also be used to determine optimum sensor placement when sensor availability is

low, increasing the chances of identifying target signals of interest. Simulations could also allow us

to model the Laha hierarchy in situations where the ground truth is not known or the sensing field

topology is unknown.

6.1.4 Altering the Laha Level Hierarchy

I would like to experiment with adding and/or combining levels within the Laha hierarchy as

described in the “Discussion of Laha Levels” section. An additional Sensor Measurement Level

could be implemented to differentiate between data stored on sensors and data that is stored “in

the cloud”. Data stored in the cloud would utilize the same IML level that currently exists, but

instead of copying IML data into higher levels, higher levels would simply point to the IML data.

An experiment could be constructed that measures the amount of data stored on sensors at any

one time versus the amount of data stored in the cloud with respect to raw sensor samples. This

experiment would also examine data savings provided by pointing to IML data instead of copying

IML data into higher Laha levels.

I believe that Laha is a perfect test bed for data fusion. I would like to integrate multiple

data streams into the DSNs to find correlations in the data providing more context for the signals

that we observe. For instance, solar production and other environmental data would provide useful

data streams for the OPQ network to compare signals against. These new data streams would be

provided in new level called the Data Fusion Level (DFL). Specifically, an experiment comparing

solar production to PQ utilizing this new level could provide interesting insights into how distributed

renewable energy sources directly affect power quality on the grid. With a high availability of solar

energy potential, Hawaii makes a perfect test bed for such an experiment. Other data streams that

could be fed into this level include cloud coverage and radar data, precipitation data, and general

weather data.

6.1.5 Enhanced Metric Collection

I believe Laha could do a better job at collecting metrics about system performance. It would be

good to know exactly when data is garbage collected. It would also be useful to collect more memory

265

and system utilization metrics per plugin to determine the performance overhead of individual pieces

of analysis.

Future deployments could investigate utilizing more detailed ground truth metrics. The ground

truth metrics utilized by OPQ only provided high level trends for voltage, frequency, and THD. It

could be useful to have ground truth metrics that include some sort of indication of anomalous PQ

events because the UHM ground truth only provided trend data and Events and Incidents were

extracted from the trend data by applying thresholds used in the OPQ network. Ground truth

data that has a built-in notion of events could be more accurate than determining where the ground

truth data should have observed events.

6.1.6 Expanded Sensor Coverage

Finally, I would like to develop and deploy more sensors for OPQ outside of the UHM micro-grid.

It would be useful to discover the interactions in PQ between multiple grids, island wide, and

between islands. By having expanded sensor coverage, I believe OPQ could be utilized for solving

larger scale problems. For example, an island wide deployment could be useful for accurately

determining how distributed intermittent renewable energy sources affect the power grid as a whole

and also how renewable energy sources affect individual communities. A state wide deployment

between islands could be useful in determining how different utility providers affect PQ in relation

to distributed renewable energy sources. A nation wide deployment of OPQ Boxes could provide

details about how multiple connected power grids affect power quality and could provide metrics

on how PQ signals travel across the grid on a much larger scale. OPQ Boxes could also be deployed

in other countries, specifically developing countries, to better understand where PQ issues arise

and provide insights into ways to mitigate these PQ problems. Deployments of OPQ Boxes near

sensitive electronics (such as server farms) could be used to monitor PQ and its affects on electronic

equipment, potentially alerting users to problems before they occur and providing cost savings in

terms of reduced hardware maintenance and turnover.

6.1.7 Final Thoughts on Future Directions

Laha enables developers of DSNs to solve the major problems facing modern DSNs. These namely

include the collection, storage, management, and analysis of Big Data created from DSNs. These

improvements allow us to solve some of the higher level problems facing us today. One such

example is utilizing Laha to deal with examining how the integration of large scale intermittent

renewable energy sources within the Hawaiian power grids affects PQ and providing measures and

metrics to mitigate those problems. Another example includes utilizing Laha to setup early warning

systems for tsunamis or volcanic eruptions within the state of Hawaii or abroad. Laha enables the

deployment of large scale high volume DSNs for the purpose of solving problems in different domains

that would be difficult to solve without Laha.

266

Appendices

267

APPENDIX A
MAUKA DEFAULT CONFIGURATION

This appendix contains the default configuration for the OPQ Mauka middleware component.

This is included to show what default values Mauka utilized over the course of the OPQ deployment.

These values are used to configure Mauka’s communication protocols and to configure parameters

used for the analysis of PQ by Mauka plugins and Phenomena.

{

// Enables debugging for Mauka plugins

"mauka.debug": true,

// List of plugins to debug

"mauka.debug.plugins": ["MakaiEventPlugin", "StatusPlugin"],

// Should the event broker be started with Mauka?

"mauka.startEventBroker": true,

// Should the pub/sub broker be started with Mauka?

"mauka.startPubSubBroker": true,

// Should the plugins be started with Mauka?

"mauka.startPlugins": true,

// Makai’s event endpoint

"zmq.event.interface" : "tcp://localhost:10000",

// Makai’s triggering endpoint

"zmq.trigger.interface" : "tcp://localhost:9899",

// Mauka’s pub/sub broker producer endpoint

"zmq.mauka.broker.pub.interface": "tcp://*:9883",

// Mauka’s pub/sub broker consumer endpoint

"zmq.mauka.broker.sub.interface": "tcp://*:9882",

// Mauka’s plugin producer endpoint

"zmq.mauka.plugin.pub.interface": "tcp://localhost:9882",

// Mauka’s plugin consumer endpoint

"zmq.mauka.plugin.sub.interface": "tcp://localhost:9883",

268

// Plugin manager response endpoint

"zmq.mauka.plugin.management.rep.interface": "tcp://*:12000",

// Plugin manager request endpoint

"zmq.mauka.plugin.management.req.interface": "tcp://localhost:12000",

// MongoDB host

"mongo.host": "localhost",

// MongoDB port

"mongo.port": 27017,

// MongoDB database

"mongo.db": "opq",

// Plugin heartbeat interval in seconds

"plugins.base.heartbeatIntervalS": 60.0,

// ITIC segmentation threshold

"plugins.IticPlugin.segment.threshold.rms": 0.1,

// FrequencyVariationPlugin reference frequency

"plugins.FrequencyVariationPlugin.frequency.ref": 60.0,

// FrequencyVariationPlugin threshold low

"plugins.FrequencyVariationPlugin.frequency.variation.threshold.low": 0.1,

// FrequencyVariationPlugin threshold high

"plugins.FrequencyVariationPlugin.frequency.variation.threshold.high": 0.1,

// FrequencyVariationPlugin interruption threshold

"plugins.FrequencyVariationPlugin.frequency.interruption": 58.0,

// FrequencyVariationPlugin maximum lull in windows

"plugins.FrequencyVariationPlugin.max.lull.windows": 3,

// TransietPlugin noise floor

"plugins.TransientPlugin.noise.floor" : 6.0,

// TransietPlugin minimum oscillatory cycles

"plugins.TransientPlugin.oscillatory.min.cycles" : 3,

269

// TransietPlugin low frequency max hz

"plugins.TransientPlugin.oscillatory.low.freq.max.hz" : 5000.0,

// TransietPlugin medium frequency max hx

"plugins.TransientPlugin.oscillatory.med.freq.max.hz" : 500000.0,

// TransietPlugin high frequency max hz

"plugins.TransientPlugin.oscillatory.high.freq.max.hz" : 5000000.0,

// TransietPlugin Zero crossing threshold

"plugins.TransientPlugin.arcing.zero.crossing.threshold" : 10,

// TransietPlugin Maximum lull in milliseconds

"plugins.TransientPlugin.max.lull.ms" : 4.0,

// TransietPlugin periodic notching standard deviation

"plugins.TransientPlugin.max.periodic.notching.std.dev" : 2.0,

// TransietPlugin periodicity threshold

"plugins.TransientPlugin.auto.corr.thresh.periodicity" : 0.4,

// MakaiEventPlugin wait this many seconds before accessing data

"plugins.MakaiEventPlugin.getDataAfterS": 10.0,

// MakaiEventPlugin filter order for frequency extraction

"plugins.MakaiEventPlugin.filterOrder":4,

// MakaiEventPlugin cutoff frequency for frequency extraction

"plugins.MakaiEventPlugin.cutoffFrequency": 500.0,

// MakaiEventPlugin number of cycles per frequency measurements

"plugins.MakaiEventPlugin.frequencyWindowCycles": 1,

// MakaiEventPlugin down sample rate for frequency extraction

"plugins.MakaiEventPlugin.frequencyDownSampleRate": 2,

// ThdPlugin threshold percent

"plugins.ThdPlugin.threshold.percent": 5.0,

// ThdPlugin window size in milliseconds

"plugins.ThdPlugin.window.size.ms": 200,

// Mauka’s health endpoint

270

"plugins.StatusPlugin.port": 8911,

// How often system statistics should be summarized

"plugins.SystemStatsPlugin.intervalS": 60,

// How often system statistics should be queried

"plugins.SystemStatsPlugin.systemStatsIntervalS": 5,

// Default configuration for Laha if one does not exist in the databasr

"laha.config.default": {

"ttls": {

"box_samples": 900,

"measurements": 86400,

"trends": 604800,

"events": 2592000,

"incidents": 31536000

}

}

}

271

APPENDIX B
ITIC CURVE POLYGON POINTS

This appendix provides the polygons used by the ITIC plugin. Polygons are represented as a

set of points. Easy x value represents a duration in electrical cycles and each y value represents a

percentage from nominal.

PROHIBITED_REGION_POLYGON = [

[HUNDREDTH_OF_A_CYCLE, 500],

[1, 200],

[3, 140],

[3, 120],

[20, 120],

[500, 120],

[500, 110],

[10000, 110],

[10000, 500],

[HUNDREDTH_OF_A_CYCLE, 500]

]

"""Polygon representing the prohibited region"""

NO_DAMAGE_REGION_POLYGON = [

[20, 0],

[20, 40],

[20, 70],

[500, 70],

[500, 80],

[10000, 80],

[10000, 90],

[10000, 0],

[20, 0]

]

"""Polygon representing the no damage region"""

NO_INTERRUPTION_REGION_POLYGON = [

[0, 0],

[0, 500],

[HUNDREDTH_OF_A_CYCLE, 500],

[1, 200],

[3, 140],

[3, 120],

[20, 120],

272

[500, 120],

[500, 110],

[10000, 110],

[10000, 90],

[10000, 80],

[500, 80],

[500, 70],

[20, 70],

[20, 40],

[20, 0],

[0, 0]

]

"""Polygon representing the no interruption region"""

273

APPENDIX C
LOKAHI DATA PACKET PROTOCOL

This appendix provides the data protocol utilized by Lokahi sensors. This appendix is included

to show what metadata and data fields are present in Lokahi data packets. The protocol is described

using protocol buffers version 3.

syntax = "proto3";

option java_package = "io.redvox.apis";

message RedvoxPacket {

// Identity information

uint32 api = 1; // The API version of this protocol

string uuid = 2; // A unique identifier assigned by the client and not user

configurable

string redvox_id = 3; // Device id of the client, user configurable. Alpha-

numeric + underscores "_" only.

string authenticated_email = 4; // If the client has authenticated, store authenticated

email

string authentication_token = 5; // JWT obtained from authentication

string firebase_token = 23; // Token obtained from Google’s Firebase

// Packet information

bool is_backfilled = 6; // Is this live data or backfilled (filled in by the server)

bool is_private = 7; // Is this data private or public?

bool is_scrambled = 8; // Is the audio channel scrambled?

// Device information

string device_make = 9; // e.g. HTC, iPhone, Samsung, etc

string device_model = 10; // e.g. PixelXL, 6s, etc

string device_os = 11; // e.g. iOS, Android

string device_os_version = 12; // Operating system version

string app_version = 13; // App version

float battery_level_percent = 24; // Battery level of device (0.0%-100.0%)

float device_temperature_c = 25; // Temperature of device in Celsius

// Server information

string acquisition_server = 14; // Full protocol, url, port, and endpoint. e.g. wss

://redvox.io:9000/api/900

string time_synchronization_server = 15; // Full protocol, url, port, and endpoint.

string authentication_server = 16; // Full protocol, url, port, and endpoint.

274

// Timestamps

int64 app_file_start_timestamp_epoch_microseconds_utc = 17; // Timestamp of packet

creation

int64 app_file_start_timestamp_machine = 18; // Internal machine time of packet

creation

int64 server_timestamp_epoch_microseconds_utc = 19; // Time at which this packet

arrives at the server (filled in by the server)

// Data payloads

repeated EvenlySampledChannel evenly_sampled_channels = 20; // List of evenly sampled

channels. i.e. channels with a stable sample rate such as microphone data

repeated UnevenlySampledChannel unevenly_sampled_channels = 21; // List of unevenly

sampled channels. i.e. those without a stable sample rate such as barometer or GPS

repeated string metadata = 22; // Any extra misc metadata

that needs associated with this packet

}

// An array of int32s

message Int32Payload {

repeated int32 payload = 1;

}

// An array of uint32s

message UInt32Payload {

repeated uint32 payload = 1;

}

// An array of int64s

message Int64Payload {

repeated int64 payload = 1;

}

// An array of uint64s

message UInt64Payload {

repeated uint64 payload = 1;

}

// An array of float32s

message Float32Payload {

repeated float payload = 1;

}

275

// An array of float64s

message Float64Payload {

repeated double payload = 1;

}

// An array of bytes

message BytePayload {

enum BytePayloadType {

BYTES = 0;

UINT8 = 1;

UNINT16 = 2;

UNINT24 = 3;

UINT32 = 4;

UINT64 = 5;

INT8 = 6;

INT16 = 7;

INT24 = 8;

INT32 = 9;

INT64 = 10;

FLOAT32 = 11;

FLOAT64 = 12;

OTHER = 13;

}

enum ChannelType {

MICROPHONE = 0;

BAROMETER = 1;

LATITUDE = 2;

LONGITUDE = 3;

SPEED = 4;

ALTITUDE = 5;

RESERVED_0 = 6;

RESERVED_1 = 7;

RESERVED_2 = 8;

TIME_SYNCHRONIZATION = 9;

ACCURACY = 10;

ACCELEROMETER_X = 11;

ACCELEROMETER_Y = 12;

ACCELEROMETER_Z = 13;

MAGNETOMETER_X = 14;

MAGNETOMETER_Y = 15;

276

MAGNETOMETER_Z = 16;

GYROSCOPE_X = 17;

GYROSCOPE_Y = 18;

GYROSCOPE_Z = 19;

OTHER = 20;

LIGHT = 21;

IMAGE = 22;

INFRARED = 23;

}

// A channel with evenly sampled data. i.e., one with a stable sample rate such as

microphone

// Note: Multiple values can be associated with each channel. If you specify more than

one channel type, then the payload should have interleaving values.

// See unevenly sampled channels for a better explanation of this.

message EvenlySampledChannel {

repeated ChannelType channel_types = 1; // Channel types locked to one

sample rate

string sensor_name = 2; // Name of sensor

double sample_rate_hz = 3; // Sample rate in Hz

int64 first_sample_timestamp_epoch_microseconds_utc = 4; // Timestamp of first

sample in channel

oneof payload { // Channel payload, client

picks most appropriate payload type

BytePayload byte_payload = 5;

UInt32Payload uint32_payload = 6;

UInt64Payload uint64_payload = 7;

Int32Payload int32_payload = 8;

Int64Payload int64_payload = 9;

Float32Payload float32_payload = 10;

Float64Payload float64_payload = 11;

}

repeated double value_means = 12; // Mean values in payload, one mean per channel

repeated double value_stds = 13; // Standard deviations in payload, one per

channel

repeated double value_medians = 14; // Median values in payload, one per channel

repeated string metadata = 15; // Extra metadata to associate with this channel

}

// A channel without evenly sampled data. i.e., one with a non-stable sample rate such as

barometer or GPS

// Note: Multiple values can be associated with each timestamp such as in the case of a

277

GPS returning lat, lng, speed, and altitude at the same time

// For each value, specify a channel type, then in the payload, interleave the values.

// e.g. channel_types = [LATITUDE, LONGITUDE, SPEED, ALTITUDE], then the payload becomes

for each timestamp/sample i

// payload = [latitude[0], longitude[0], speed[0], altitude[0], latitude[1], longitude

[1], speed[1], altitude[1], ..., latitude[i], longitude[i], speed[i], altitude[i]]

message UnevenlySampledChannel {

repeated ChannelType channel_types = 1; // Channel types associated with

provided timestamps

string sensor_name = 2; // Name of sensor

repeated int64 timestamps_microseconds_utc = 3; // List of timestamps for each

sample

oneof payload { // Channel payload

BytePayload byte_payload = 4;

UInt32Payload uint32_payload = 5;

UInt64Payload uint64_payload = 6;

Int32Payload int32_payload = 7;

Int64Payload int64_payload = 8;

Float32Payload float32_payload = 9;

Float64Payload float64_payload = 10;

}

double sample_interval_mean = 11; // Mean of sample internval as

determined from timestamps

double sample_interval_std = 12; // Standard deviation of sample

interval from timestamps

double sample_interval_median = 13; // Median of sample interval from

timestamps

repeated double value_means = 14; // Mean values in payload, one mean per

channel

repeated double value_stds = 15; // Standard deviations in payload, one

per channel

repeated double value_medians = 16; // Medians in payload, one per channel

repeated string metadata = 17; // Extra metadata to associate with

this channel

}

// Returned to client after each packet send

message RedvoxPacketResponse {

// Response types

enum Type {

OK = 0;

ERROR = 1;

278

}

// Error types

enum Error {

NOT_AUTHENTICATED = 0;

OTHER = 1;

}

279

APPENDIX D
LOKAHI ACQUISITION SAMPLE CONFIG

This appendix provides a sample configuration for Lokahi’s data acquisition service. This is

provided to show the options that are available and the flexibility of the Lokahi data acquisition

service. In particular, this configuration can be used to tune how data acquisition moves data

between other distributed services within the Lokahi network.

Acquisition WebSocket server configuration

[server]

host = "localhost" # The host the acquisition server should bind to

port = 9000 # The port the acquisition server should bind to

url_endpoint = "/acquisition/v900/" # The URL endpoint to listen for connections on

max_payload_size = 4194304 # Max size of a packet, 4MB

These settings allow the packet to be updated by the acquisition server before using

the packet.

[packet_updates]

update_server_timestamp = true # If set to true, server will update packets

arrival timestamp

update_packet_sizes = true # If set to true, the original packet sizes will

be stored in the metadata

redact_authentication_token = true # If set to true, the authentication token will

be redacted.

redact_firebase_token = true # If set to true, the firebase token will be

redacted.

add_metadata = [] # Metadata strings to be added to the packet

add_ignore_server_timestamp_metadata = true # If set to true, metadata will be adding

indicating any other servers should ignore setting the server timestamp

LZ4 compression settings. Compression takes place after the packet is updated but

before it is forwared to the rest

of the processing pipeline.

[lz4]

use_default = true # If set, the default LZ4 compression routine will be used. If not

set, compression_level is used.

compression_level = 16 # Compression level between 1-16. 1=fast compression, bigger size.

16=slow compression, smaller size. Only used if use_default is false.

Settings for JSON web tokens

[jwt]

280

enabled = false # If set, this server will check the

JWT for authentication/authorization and reject packets that fail the check.

Disabling this will let all packets through.

java_library_path = "../jwt/jwt-auth-0.1.0-all.jar" # Path to the JWT authentication .jar

library

public_key_path = "./redvox_io_production_key.public" # Path to public key.

blacklist_public = false # If set, public devices will be

blacklisted

File system handler.

This handler allows received packets to be written to disk at the provided base paths.

[[fs_handlers]]

enabled = true # Setting this enables the fs_handler

base_path = "/Users/anthony/scrap" # A base path that the redvox packet will be written

to.

devices_whitelist = []

devices_blacklist = []

owners_whitelist = []

owners_blacklist = []

WebSocket handler.

This handler allows received packets to be relayed to other WS acquisition servers at

the provided addresses.

[[ws_handlers]]

enabled = false # If set, this actor will be

enabled

ws_address = "wss://milton.soest.hawaii.edu:8000/acquisition/v900" # Address to relay

this data to

devices_whitelist = []

devices_blacklist = []

owners_whitelist = []

owners_blacklist = []

AWS S3 handlers.

When enabled, these will upload redvox packets to AWS S3.

[[s3_handlers]]

enabled = false # If set, this actor will be enabled

region = "UsWest1" # S3 region

access_key = "" # S3 access key

secret_access_key = "" # S3 secret key

bucket = "foo" # S3 data bucket

devices_whitelist = []

281

devices_blacklist = []

owners_whitelist = []

owners_blacklist = []

[[mongodb_handlers]]

enabled = false # If set, this actor will be enabled

host = "" # MongoDB host

port = 0 # MongoDB port

username = "" # MongoDB username

password = "" # MongoDB password

authentication_db = "" # MongoDB authentication db

storage_db = "" # MongoDB storage db

storage_coll = "RedvoxPacketApi900" # MongoDB packet collection

historical_device_coll = "HistoricalDevice" # MongoDB historical collection

redvox_device_api900_coll = "RedvoxDeviceApi900" # MongoDB device collection

devices_whitelist = []

devices_blacklist = []

owners_whitelist = []

owners_blacklist = []

[[kafka_handlers]]

enabled = true # If set, this actor will be enabled

bootstrap_server = "" # Kafka bootstrap server

topic = "" # Kafka topic

mongodb_partition_provider_host = "" # MongoDB host

mongodb_partition_provider_port = 0 # MongoDB port

mongodb_partition_provider_username = "" # MongoDB username

mongodb_partition_provider_password = "" # MongoDB password

mongodb_partition_provider_authentication_db = "" # MongoDB auth db

set_key_format_full = true # If set, will use full file path,

otherwise just file name for key

devices_whitelist = []

devices_blacklist = []

owners_whitelist = []

owners_blacklist = []

encrypt_with_key = "" # If provided, encrypt using this user’s

GPG key

282

APPENDIX E
SIMULATION PARAMETERS

This appendix provides the full simulation parameters that were used to simulate Laha for the

OPQ and Lokahi networks. This appendix also provides detailed results from the simulation runs.

OPQ Params

total events 151516

total duration s 1575423519.721

total data duration s 2670727.5250000004

percent data duration 0.001695244162327203

mean data duration s, std 13.787246528315524

total data 64097460600.0

mean data, std 330893.91667957255

mean data per second 40.685859895852865

mean events per second 0.0001229574127687932

percent events to incident 0.5578222761952533

total incidents 332475

total duration s 22801438.273333497

total data duration s 175202.14854980464

percent data duration 0.00011120955499054127

mean data duration s, std 0.5269633763434984

total data 4204851565.1953125

mean data, std 12647.121032243966

mean data per second 184.41168117508303

mean incidents per second 0.014581317021077251

total_samples=1119744000000 2239488.00MB

total_measurements=93312000 13530.24MB orphaned_measurements=84630948 90.70% 12271.49MB

event_measurements=5904083 6.33% 856.09MB incident_measurements=2773723 2.97% 402.19

MB phenomena_measurements=3246 0.00% 0.47MB

total_trends=1555200 567.65MB orphaned_trends=1410763 90.71% 514.93MB event_trends=98449

6.33% 35.93MB incident_trends=45928 2.95% 16.76MB incident_phenomena=60 0.00% 0.02MB

total_events=896161 301110.10MB orphaned_events=609242 67.98% 204705.31MB incident_events

=286578 31.98% 96290.21MB phenomena_events=341 0.04% 114.58MB

total_incidents=1741111 22371.54MB phenomena_incidents=1944 0.11% 24.98MB

total_incidents=1944 1.22MB

total_phenomena=1287 0.81MB

total_storage_items=190818416

283

Lokahi Params

Total events: 1648

Event durations sum: 3311651

Event durations mean: 2009.4969660194174

Event durations std: 1264.0847076240766

Percent event data duration: 0.06263335103845011

Event bytes sum: 21298346800.0

Event bytes mean: 12923754.126213592

Event bytes std: 15901090.780444184

Event bytes sem: 391695.25751799915

mean events per second 3.116867161164198e-05

Event DR/s: 402.81624834955454

Event DR/s sem: 2186.7919171970652

Total incidents: 41

Incident durations sum: 138960

Incident durations mean: 3389.268292682927

Incident durations std: 13217.736124052872

Percent incident data duration: 0.002724681841042579

Incident bytes sum: 1892959407.0

Incident bytes mean: 46169741.63414634

Incident bytes std: 85727404.3195229

Incident bytes sem: 13388371.229525428

mean incidents per second 8.03914475264434e-07

Incident DR/s: 37.11652361890925

Incident DR/s sem: 12004.184732882764

avg trend size bytes = 2471

80

total_samples=146371840 585.49MB

total_measurements=0 0.00MB orphaned_measurements=0 NaN% 0.00MB event_measurements=0 NaN%

0.00MB incident_measurements=0 NaN% 0.00MB

total_trends=1829648 4521.06MB orphaned_trends=1607403 87.85% 3971.89MB event_trends

=114361 6.25% 282.59MB incident_trends=107884 5.90% 266.58MB

total_events=2945 1894.22MB orphaned_events=2945 100.00% 1894.22MB incident_events=0

0.00% 0.00MB

total_incidents=78 84.59MB

total_storage_items=3662319

800

total_samples=1820722400 7282.89MB

284

total_measurements=0 0.00MB orphaned_measurements=0 NaN% 0.00MB event_measurements=0 NaN%

0.00MB incident_measurements=0 NaN% 0.00MB

total_trends=2275903 5623.76MB orphaned_trends=1999646 87.86% 4941.13MB event_trends

=142319 6.25% 351.67MB incident_trends=133938 5.89% 330.96MB

total_events=2835 18234.72MB orphaned_events=2835 100.00% 18234.72MB incident_events=0

0.00% 0.00MB

total_incidents=69 748.29MB

total_storage_items=4554710

8000

total_samples=22621096000 90484.38MB

total_measurements=0 0.00MB orphaned_measurements=0 NaN% 0.00MB event_measurements=0 NaN%

0.00MB incident_measurements=0 NaN% 0.00MB

total_trends=2827637 6987.09MB orphaned_trends=2484447 87.86% 6139.07MB event_trends

=177355 6.27% 438.24MB incident_trends=165835 5.86% 409.78MB

total_events=2801 180160.32MB orphaned_events=2801 100.00% 180160.32MB incident_events=0

0.00% 0.00MB

total_incidents=86 9326.53MB

total_storage_items=5658161

285

BIBLIOGRAPHY

[1] Actix Developers. Actix 0.9.0. https://actix.rs/, 2019.

[2] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri. An Adaptive Sampling Algorithm

for Effective Energy Management in Wireless Sensor Networks With Energy-Hungry Sensors.

IEEE Transactions on Instrumentation and Measurement, 59(2):335–344, February 2010.

[3] American Meteor Society. Fireball Event 3152. https://fireball.amsmeteors.org/

members/imo_view/event/2019/3152, Jul 2019.

[4] Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea Passarella. Energy conser-

vation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3):537–568, May 2009.

[5] Karina Asmar. Modernizing Infrasound Systems: Characterization and Analytics Approaches

for Next-Generation Sensors. PhD thesis, University of Hawaii at Manoa, 2019.

[6] Wasim Ahmad Bhat. Is a data-capacity gap inevitable in big data storage? Computer,

51(9):54–62, 2018.

[7] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg Seid-

man, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring streams: a new class

of data management applications. In Proceedings of the 28th international conference on Very

Large Data Bases, pages 215–226. VLDB Endowment, 2002.

[8] Alberto Cerpa and Deborah Estrin. ASCENT: Adaptive self-configuring sensor networks

topologies. IEEE transactions on mobile computing, 3(3):272–285, 2004.

[9] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven Tuecke. The data

grid: Towards an architecture for the distributed management and analysis of large scientific

datasets. Journal of network and computer applications, 23(3):187–200, 2000.

[10] Christe, Anthony. OPQ. https://github.com/openpowerquality/opq, 2019.

[11] David Chu, Amol Deshpande, Joseph M Hellerstein, and Wei Hong. Approximate data collec-

tion in sensor networks using probabilistic models. In 22nd International Conference on Data

Engineering (ICDE’06), pages 48–48. IEEE, 2006.

[12] Paolo Costa, Austin Donnelly, Antony Rowstron, and Greg O’Shea. Camdoop: Exploiting in-

network aggregation for big data applications. In Proceedings of the 9th USENIX conference

on Networked Systems Design and Implementation, pages 3–3. USENIX Association, 2012.

286

https://actix.rs/
https://fireball.amsmeteors.org/members/imo_view/event/2019/3152
https://fireball.amsmeteors.org/members/imo_view/event/2019/3152
https://github.com/openpowerquality/opq

[13] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.

[14] Charles Dickens, Anthony J. Christe, and Philip M. Johnson. A Transient Classification System

Implementation on an Open Source Distributed Power Quality Network. In Proceedings of the

Ninth International Conference on Smart Grids, Green Communications and IT Energy-aware

Technologies, Athens, Greece, June 2019.

[15] Sasa Z Djokic, Jan Desmet, Greet Vanalme, JV Milanovic, and Kurt Stockman. Sensitivity of

personal computers to voltage sags and short interruptions, 2005.

[16] Docker, Inc. Docker 19.03. https://www.docker.com/, 2019.

[17] Beven II et al. Hurricane Lane (2018). https://www.nhc.noaa.gov/data/tcr/EP142018_

Lane.pdf, 2018.

[18] Thomas Farges, François Coulouvrat, Louis-Jonardan Gallin, and Régis Marchiano. Infrasound

for detection, localization, and geometrical reconstruction of lightning flashes. In Infrasound

Monitoring for Atmospheric Studies, pages 911–938. Springer, 2019.

[19] Apache Foundation. Apache NiFi. https://nifi.apache.org/, October 2018. Accessed:

2018-10-22.

[20] Diego Garćıa-Gil, Julián Luengo, Salvador Garćıa, and Francisco Herrera. Enabling smart

data: noise filtering in big data classification. Information Sciences, 479:135–152, 2019.

[21] Gartner. What Is Big Data? https://www.gartner.com/it-glossary/big-data/, Dec

2016.

[22] Sinan Gezici, Zhi Tian, Georgios B Giannakis, Hisashi Kobayashi, Andreas F Molisch, H Vin-

cent Poor, and Zafer Sahinoglu. Localization via ultra-wideband radios: a look at positioning

aspects for future sensor networks. IEEE signal processing magazine, 22(4):70–84, 2005.

[23] Google. Protocol Buffers v3. https://developers.google.com/protocol-buffers/, 2019.

[accessed June 12, 2019].

[24] Jiawei Han, Guozhu Dong, and Yiwen Yin. Efficient mining of partial periodic patterns in

time series database. In Data Engineering, 1999. Proceedings., 15th International Conference

on, pages 106–115. IEEE, 1999.

[25] Paul Horowitz and Winfield Hill. The Art of Electronics. Cambridge University Press, New

York, NY, USA, 3rd edition, 2015.

287

https://www.docker.com/
https://www.nhc.noaa.gov/data/tcr/EP142018_Lane.pdf
https://www.nhc.noaa.gov/data/tcr/EP142018_Lane.pdf
https://nifi.apache.org/
https://www.gartner.com/it-glossary/big-data/
https://developers.google.com/protocol-buffers/

[26] White House. Big data and privacy: a technological perspective. Washington, DC: Executive

Office of the President, President’s Council of Advisors on Science and Technology Google

Scholar, 2014.

[27] James N Hughes, Matthew D Zimmerman, Christopher N Eichelberger, and Anthony D Fox. A

survey of techniques and open-source tools for processing streams of spatio-temporal events. In

Proceedings of the 7th ACM SIGSPATIAL International Workshop on GeoStreaming, page 6.

ACM, 2016.

[28] Patrick Hupe, Lars Ceranna, and Alexis Le Pichon. How can the international monitoring

system infrasound network contribute to gravity wave measurements? Atmosphere, 10(7):399,

2019.

[29] IEEE. P1159/D3 Draft Recommended Practice for Monitoring Electric Power Quality, 2018.

[30] Eric Firing Michael Droettboom John Hunter, Darren Dale et al. Matplotlib 3.1.0, 2002 –.

[accessed June 12, 2019].

[31] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.

[32] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy 1.1.0: Open source scientific tools

for Python. http://www.scipy.org/, 2001–. [accessed February 2, 2019].

[33] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman,

and Angela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation.

IEEE transactions on pattern analysis and machine intelligence, 24(7):881–892, 2002.

[34] Holger Karl and Andreas Willig. Protocols and architectures for wireless sensor networks. John

Wiley & Sons, 2007.

[35] Eamonn Keogh, Stefano Lonardi, and Bill’Yuan-chi’ Chiu. Finding surprising patterns in

a time series database in linear time and space. In Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 550–556. ACM, 2002.

[36] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for log

processing. In Proceedings of the NetDB, pages 1–7, 2011.

[37] HJ Landau. Sampling, data transmission, and the Nyquist rate. Proceedings of the IEEE,

55(10):1701–1706, 1967.

[38] Koen Langendoen and Niels Reijers. Distributed localization in wireless sensor networks: a

quantitative comparison. Computer networks, 43(4):499–518, 2003.

288

http://www.scipy.org/

[39] Yann-Aël Le Borgne, Silvia Santini, and Gianluca Bontempi. Adaptive model selection for

time series prediction in wireless sensor networks. Signal Processing, 87(12):3010–3020, 2007.

[40] Scikit learn Developers. Scikit-learn 0.21.2. https://scikit-learn.org/stable/index.

html, 2019. [accessed June 12, 2019].

[41] Lightbend. Akka 2.5. https://akka.io/, 2019.

[42] Tom H Luan, Longxiang Gao, Zhi Li, Yang Xiang, Guiyi Wei, and Limin Sun. Fog computing:

Focusing on mobile users at the edge. arXiv preprint arXiv:1502.01815, 2015.

[43] Miklos Maroti, Gyula Simon, Akos Ledeczi, and Janos Sztipanovits. Shooter localization in

urban terrain. Computer, 37(8):60–61, 2004.

[44] Hamed Mohsenian-Rad, Emma Stewart, and Ed Cortez. Distribution synchrophasors: Pairing

big data with analytics to create actionable information. IEEE Power and Energy Magazine,

16(3):26–34, 2018.

[45] Sergey Negrashov. Design, Implementation, and Evalutation of Napali: A Novel Distributed

Sensor Network for Improved Power Quality Monitoring. PhD thesis, University of Hawaii at

Manoa, 2020.

[46] Dragos Niculescu and Badri Nath. Ad hoc positioning system (APS) using AOA. In INFOCOM

2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications.

IEEE Societies, volume 3, pages 1734–1743. Ieee, 2003.

[47] Travis Oliphant. NumPy 1.14.5: A guide to NumPy. http://www.numpy.org/, 2006–. [ac-

cessed February 2, 2019].

[48] Park, Joseph and Garcés, Milton and Thigpen, Bruce. The rotary subwoofer: A controllable

infrasound source. The Journal of the Acoustical Society of America, 125(4):2006–2012, 2009.

[49] Anthony C Parsons, W Mack Grady, Edward J Powers, and John C Soward. A direction finder

for power quality disturbances based upon disturbance power and energy. In Harmonics and

Quality of Power Proceedings, 1998. Proceedings. 8th International Conference On, volume 2,

pages 693–699. IEEE, 1998.

[50] AB Perttu, MA Garces, and WA Thelen. Regional Localization with the Hawaii Island Infra-

sound Network. In AGU Fall Meeting Abstracts, 2013.

[51] Christoph Pilger, Lars Ceranna, Alexis Le Pichon, and Peter Brown. Large meteoroids as

global infrasound reference events. In Infrasound Monitoring for Atmospheric Studies, pages

451–470. Springer, 2019.

289

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://akka.io/
http://www.numpy.org/

[52] Gregory J Pottie and William J Kaiser. Wireless integrated network sensors. Communications

of the ACM, 43(5):51–58, 2000.

[53] Power Standards Lab. Voltage Sags (Dips) and Swells. https://www.powerstandards.com/

tutorials/voltage-sags-dips-and-swells/, Sep 2017.

[54] Python Software Foundation. Python 3.7. http://www.python.org/, 2019. [accessed June

12, 2019].

[55] C Savarese J Rabaey, Koen Langendoen, et al. Robust positioning algorithms for distributed

ad-hoc wireless sensor networks. In USENIX technical annual conference, pages 317–327, 2002.

[56] RedVox, Inc. RedVox Reports. https://redvox.io/reports, 2020.

[57] Rust Developers. Rust 1.41. https://www.rust-lang.org/, 2019.

[58] Paolo Santi. Topology control in wireless ad hoc and sensor networks. ACM computing surveys

(CSUR), 37(2):164–194, 2005.

[59] Andreas Savvides, Heemin Park, and Mani B Srivastava. The bits and flops of the n-hop

multilateration primitive for node localization problems. In Proceedings of the 1st ACM inter-

national workshop on Wireless sensor networks and applications, pages 112–121. ACM, 2002.

[60] Curt Schurgers, Vlasios Tsiatsis, Saurabh Ganeriwal, and Mani Srivastava. Topology man-

agement for sensor networks: Exploiting latency and density. In Proceedings of the 3rd ACM

international symposium on Mobile ad hoc networking & computing, pages 135–145. ACM,

2002.

[61] Curt Schurgers, Vlasios Tsiatsis, and Mani B Srivastava. STEM: Topology management for

energy efficient sensor networks. In Aerospace Conference Proceedings, 2002. IEEE, volume 3,

pages 3–3. IEEE, 2002.

[62] Free Software Foundation. GNU General Public License. http://www.gnu.org/licenses/

gpl.html, June 2007.

[63] SpaceX. SpaceX Mission Sheet. https://www.spacex.com/sites/spacex/files/starlink_

press_kit_nov2019.pdf, November 2019.

[64] Andrzej Stateczny and Marta Wlodarczyk-Sielicka. Self-organizing artificial neural networks

into hydrographic big data reduction process. In International Conference on Rough Sets and

Intelligent Systems Paradigms, pages 335–342. Springer, 2014.

[65] Caimu Tang and Cauligi S Raghavendra. Compression techniques for wireless sensor networks.

In Wireless sensor networks, pages 207–231. Springer, 2004.

290

https://www.powerstandards.com/tutorials/voltage-sags-dips-and-swells/
https://www.powerstandards.com/tutorials/voltage-sags-dips-and-swells/
http://www.python.org/
https://redvox.io/reports
https://www.rust-lang.org/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
https://www.spacex.com/sites/spacex/files/starlink_press_kit_nov2019.pdf
https://www.spacex.com/sites/spacex/files/starlink_press_kit_nov2019.pdf

[66] RS Thallam and GT Heydt. Power acceptability and voltage sag indices in the three phase

sense. In 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134), volume 2,

pages 905–910. IEEE, 2000.

[67] Chen Tian, Hongbo Jiang, Xue Liu, Xinbing Wang, Wenyu Liu, and Yi Wang. Tri-message: A

lightweight time synchronization protocol for high latency and resource-constrained networks.

In 2009 IEEE International Conference on Communications, pages 1–5. IEEE, 2009.

[68] Daniela Tulone and Samuel Madden. An energy-efficient querying framework in sensor net-

works for detecting node similarities. In Proceedings of the 9th ACM international symposium

on Modeling analysis and simulation of wireless and mobile systems, pages 191–300. ACM,

2006.

[69] Daniela Tulone and Samuel Madden. PAQ: Time series forecasting for approximate query

answering in sensor networks. In European Workshop on Wireless Sensor Networks, pages

21–37. Springer, 2006.

[70] Muhammad Habib ur Rehman, Victor Chang, Aisha Batool, and Teh Ying Wah. Big data

reduction framework for value creation in sustainable enterprises. International Journal of

Information Management, 36(6):917–928, 2016.

[71] USGS Earthquake Hazards Program. M 4.5 - 8km ENE of Papa’ikou, Hawaii. https://

earthquake.usgs.gov/earthquakes/eventpage/hv71084577/executive, Aug 2019.

[72] Mehmet C Vuran, Özgür B Akan, and Ian F Akyildiz. Spatio-temporal correlation: theory

and applications for wireless sensor networks. Computer Networks, 45(3):245–259, 2004.

[73] Jonathan Stuart Ward and Adam Barker. Undefined by data: a survey of big data definitions.

arXiv preprint arXiv:1309.5821, 2013.

[74] Ajit Warrier, Sangjoon Park, Jeongki Min, and Injong Rhee. How much energy saving does

topology control offer for wireless sensor networks?–A practical study. Computer Communi-

cations, 30(14-15):2867–2879, 2007.

[75] Dong-Jun Won and Seung-Il Moon. Optimal number and locations of power quality monitors

considering system topology. IEEE Transactions on power delivery, 23(1):288–295, 2008.

[76] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. Data mining with big data. IEEE

transactions on knowledge and data engineering, 26(1):97–107, 2014.

[77] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur

Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, et al. Apache

spark: a unified engine for big data processing. Communications of the ACM, 59(11):56–65,

2016.

291

https://earthquake.usgs.gov/earthquakes/eventpage/hv71084577/executive
https://earthquake.usgs.gov/earthquakes/eventpage/hv71084577/executive

[78] ZeroMQ. ZeroMQ. http://zeromq.org/, 2019. [accessed June 12, 2019].

292

http://zeromq.org/

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Converting Sensor Data into Actionable Insights
	Big Data Management in DSNs
	Traditional Approaches to DSN Optimization
	Laha: An Abstract Framework for Adaptively Optimizing DSNs
	Claims of Laha Abstract Framework
	Generality of the Laha Framework
	Ability to Convert Primitive Data into Actionable Insights
	Tiered Big Data Management
	Tertiary Goals and Claims

	Contributions of Laha
	Organization of this Dissertation

	Related Work
	Big Data and Distributed Sensor Networks
	Distributed Sensor Networks and Big Data Management
	Distributed Sensor Networks and Predictive Analytics and Forecasting
	Determining Topology and Localization
	Optimizations for Triggering

	System Design
	Big Data Management in Laha
	Instantaneous Measurements Level
	Aggregate Measurements Level
	Detections Level
	Incidents Level
	Phenomena Level

	Phenomena: Providing Adaptive Optimizations in Laha
	Annotation Phenomena
	Locality Phenomena
	Periodic Phenomena
	Similarity Phenomena
	Future Phenomena

	Laha Actors: Acting on the Laha Data Model
	Actor Constraints

	OPQ: A Laha-compliant Power Quality DSN
	OPQ: Boxes
	OPQ: Makai
	OPQ: Mauka
	OPQ: View
	OPQ: Dockerfication

	Lokahi: A Laha-compliant Infrasound DSN
	Lokahi Data Acquisition Service
	Lokahi Time Synchronization
	Lokahi Health
	Lokahi Analysis
	Lokahi Web

	Evaluation
	Deploy Laha reference implementations on test sites
	OPQ Reference Deployment
	Lokahi Deployment

	Validate data collected by Laha deployment
	Validate data collected by OPQ deployment
	Validate data collected by Lokahi deployment

	Use Laha deployments to evaluate the main goals of the framework
	Evaluation of the Generality of this Framework
	Evaluation of Converting Primitive Data into Actionable Insights
	Evaluation of Tiered Management of Big Data

	Evaluation of Tertiary Goals
	Evaluation of Adaptive Optimizations for Triggering
	Evaluation of Adaptive Optimizations for Detection and Classifications
	Evaluation of Model of Underlying Sensor Field Topology

	Results
	Results of Validating Data Collected by Deployments
	Ground Truth Analysis: OPQ
	Ground Truth Analysis: Lokahi

	Results of Generality of this Framework
	Results of Laha Generality for OPQ
	Results of Laha Generality for Lokahi
	Discussion on Types of DSNs Laha is Suitable For
	Discussion of Laha Levels

	Results of Converting Primitive Data into Actionable Insights
	Results of Phenomena

	Results of Tiered Management of Big Data
	DSN System Requirements: OPQ
	DSN System Requirements: Lokahi

	Results of Tertiary Goals
	Results of Adaptive Optimizations for Triggering
	Results of Adaptive Optimizations for Detection and Classification
	Results of Model of Underlying Sensor Field Topology
	Summary of Tertiary Goals

	Summary of Results

	Conclusions
	Future Directions
	Machine Learning
	Modifying Windows and Thresholds
	More Simulations
	Altering the Laha Level Hierarchy
	Enhanced Metric Collection
	Expanded Sensor Coverage
	Final Thoughts on Future Directions

	Mauka Default Configuration
	ITIC Curve Polygon Points
	Lokahi Data Packet Protocol
	Lokahi Acquisition Sample Config
	Simulation Parameters
	Bibliography

