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ABSTRACT

Today’s big data world heavily relies upon providing precise, timely, and actionable intelligence,

while being burdened by the ever increasing need for data cleaning and preprocessing. While in the

case of ingesting large quantity of unstructured data this problem is unavoidable, when it comes to

sensor networks built for a specific purpose, such as anomaly detection, some of that computation

can be moved to the edge of the network. This thesis concerns the special case of sensor networks

tailored for monitoring the power grid for anomalous behavior. These networks monitor power

delivery infrastructure with the intent of finding deviations from the nominal steady state, across

multiple geographical locations. Aforementioned deviations, known as power quality anomalies,

may originate, and be localized to the location of the sensor, or may affect a sizable portion of the

power grid. The difficulty of evaluating the extent of a power quality anomaly stems directly from

their short temporal and variable geographical impact. I present a novel distributed power quality

monitoring system called Napali which relies on extracted metrics from individual meters and their

temporal locality in order to intelligently detect anomalies and extract raw data within temporal

window and geographical areas of interest.

The claims of this thesis are that Napali outperforms existing power quality monitoring gridwide

event detection methods in resource utilization and sensitivity. Furthermore, Napali residential

monitoring is capable of power grid monitoring without deployment on the high voltage transmission

lines. Final claim of this thesis is that Napali capability of extracting portions of the events which

did not pass the critical thresholds used in other detection methods allows for better localization

of power quality disturbances. Napali claim validation was performed through deployment at the

University of Hawaii. Fifteen OPQ Box devices, designed specifically to operate with Napali were

located in various locations on campus. Data collected from these monitors was compared with

smart meters already deployed across the University. Additionally, Napali was compared with

standard methods of power quality event detection running along side the Napali systems.

Napali methodology outperformed the standard methods of power quality monitoring in resource

consumption, event quality and sensitivity. Additionally, I was able to validate that residential

utility monitoring is capable of event detection and localization without monitoring higher levels

of the power grid hierarchy. Finally, as a demonstration of Napali capabilities, I showed how data

collected by my framework can be used to partition the power delivery infrastructure without prior

knowledge of the power grid topology.
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CHAPTER 1
INTRODUCTION

Power quality research is a subset of power distribution research which focuses on studying

deviations from nominal power grid operating conditions. Devices connected to the power grid, as

well as the distribution equipment, expect a certain frequency, voltage and harmonic content of the

voltage waveform they operate on. While most equipment maintains some operational hysteresis

with respect to deviations from the nominal, large enough deviations may cause equipment failure

and instability in the power grid as a whole. In a practical sense, power quality monitoring concerns

itself with monitoring, collecting and analyzing power quality anomalies on a live and functioning

grid. In some cases, for example when performed by the utility, this information is used to make

real-time decisions, to maintain the stability of the power grid. However, data collected by power

quality monitoring equipment can also be used to diagnose local power quality problems, or to

further power generation and delivery research. For example, power quality data can be very useful

in understanding issues with the design and implementation of“smart” grids which incorporate

large amounts of distributed, intermittent power generation.

Power quality monitoring fits very well into the paradigm of remote sensing and sensor networks,

particularly into the newly emerging field of edge computing. Edge computing goes beyond the

naive approach of transmitting the entirety of the collected data from the sensor location, and

extends it by either feature extracting, preprocessing or filtering the data at the computing node

itself. This research project is centered around the design, implementation, and evaluation of a

novel edge computing architecture called Napali which combines feature extraction at the edge level

and two way communication between the sink and the edge node. I evaluated Napali in part by

implementing it in the power quality monitoring domain.

1.1 Overview of power grids

Modern power grids are hierarchically structured. Higher voltage is useful for transporting

electricity over long distances, connecting cities and towns to power generation facilities. Trans-

missions lines of 100kV and above are used to minimize losses in long distance runs, since the same

amount of power can be transmitted using much lower current, and thus much more efficiently,

than the comparable low voltage line. Close to the point of distribution, transmission voltage is

stepped down to 1kV-40kV range using large power transformers. This is done because the losses

incurred in the final leg of transmission are minimal, while extremely high voltage equipment is

expensive and requires special precautions.[35] Finally, at the consumer level the voltage level is

stepped down once more to the household voltage, for example 120Vac for North America. It is

important to note that voltage across every part of the power grid is synchronized to a phase and

frequency set by the utility. This allows multiple power producers to contribute to electricity gen-
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eration without interfering with each other.[7] In North America the 60Hz utility frequency is used

as the baseline, and its long term stability is guaranteed by the power company. How close the

power AC frequency is to the nominal value is a measure of how closely the electricity demand is

balanced by the electricity generation.

Traditional power generation sources involves applying mechanical torque to an alternating cur-

rent generator. If the load on the generator increases without increasing the torque, it will slow

down the generator and thus the utility frequency decreases. Similarly, if the demand drops but

the torque is not decreased, the frequency of generated power will increase. Even small deviations

in frequency can have adverse effects on equipment which runs synchronous to the power grid, such

as synchronous electric motors and other industrial equipment.[25] Nonlinear loads, or loads that

don’t draw a consistent amount of current through out an AC cycle, are highly prevalent in today’s

power grid. These devices contribute to the harmonic noise in power system in both current and

voltage waveform. This effect, known as harmonic distortion, can have various unintended conse-

quences on the power distribution system and connected devices. The current harmonic distortion

affects the efficiency of the distribution network, while voltage harmonic distortion may propagate

across the power distribution infrastructure and affect neighboring devices.[26] Distributed renew-

able generation may also create unintended harmonics. Distributed generators are commonly DC

systems, which utilize inverters to generate in-phase AC waveform to feed into the power grid.

Depending on the inverter design, the AC waveform may have spurious harmonics present.[25]

Large and sudden changes in load-to-generation ratio do not immediately impact frequency

due to the rotational inertia of large generation systems. Instead it will cause the line voltage to

change proportional to the load until the generation can catch up. If the load suddenly increases,

caused for example by a large motor stall, grid voltage will experience a sharp drop, known as a

sag. Similarly a large load drop will cause an voltage increase, called a swell. Voltage sags and

swells propagate throughout the entire grid infrastructure, however the dynamics of the power

grid are quite complex, and hard to predict. For example a voltage sag on one sub-transmission

chain may manifest and as a voltage swell in another.[17] Finally very fast changes in load, such as

short circuits, opening and closing of re-closers, and lightning strikes manifest as voltage transients.

Voltage transients are energetic short-lived swells on the order of a single AC cycle, which can travel

across the distribution grid. Transients may interfere with sensitive grid connected equipment, as

well as trigger protection equipment such as uninterpretable power supplies, and other over-voltage

protection devices. Transients, harmonic distortion, and RMS fluctuations and their combinations

make up the majority of power quality problems which affect the voltage waveform in the grid

connected devices. [3] All of these issues can cause power quality problems, as will be discussed

further in Section 1.4.
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1.2 Edge computing approach to anomaly detection

Edge computing is an emergent field in distributed systems. Edge computing is a consequence of

ever decreasing power consumption of computational devices found on the sensor nodes, as well as

incremental improvements in battery technology. With ever-increasing computational capabilities

in sensor networks, it becomes possible to process and store the acquired data on the device itself,

as opposed to the centralized sink. Thus the idea of edge computing leverages available computing

power of the sensor node to allow for smarter distributed sensing. Edge computing with respect to

remote sensing allows for several new approaches to anomaly detection.

Anomaly detection is a common topic across many disciplines and domains. In cyber-security

research, anomalous network traffic and program behavior is often indicative of malicious behavior.

In seismic monitoring, anomalies in ground vibrations may be precursors to an earthquake or a

volcano eruption. In observational astronomy, anomaly detection is used for detection of transient

events such as gamma ray bursts. Sensor networks are commonly tasked with anomaly detection

and must often act on them. Traditionally, stringent constraints on power consumption of battery

powered wireless sensor network nodes mean that low bandwidth and low complexity methods are

preferred. Furthermore, many sensor networks are often hindered by local noise, thus requiring

higher level filtering in order and in network processing to determine if an anomaly has occurred.

If the signal to noise of the local measurements is quite high this problem becomes trivial: one

simply collects all the distributed measurements if one or more of the measurements indicates an

anomaly. Unfortunately, in the real world such problems are rare and instead the distributed signal

is dominated by extraneous local noise. For example individual seismic sensors can’t distinguish

between a global anomaly such as an earthquake and local noise such as vibration caused by a

passing semi-truck.

The problem of global anomaly detection with distributed sensing has been explored in self-

organizing wireless sensor networks. However, these approaches are insufficient when applied to

edge computing. Edge computing relies on Internet for transport, and thus the cost of communi-

cating with the local sink and the local node is similar. Indeed in some cases it is impossible to

achieve node-to-node communication without an intermediary due to firewalls, and other security

mechanisms. In this research, I only consider approaches which rely on a sink node to facilitate

anomaly detection.

One important problem in Internet-enabled sensor networks is called the ”local noise problem”.

In many cases, the local noise presents itself with a similar signature as anomaly in question. Only

through consensus of multiple devices, is it possible to separate local noise from true system-wide

phenomenon. There are several solutions for dealing with the local noise problem in an Internet-

enabled sensor network. A naive solution is to simply transmit every distributed measurement

to a centralized data sink. This sink, as well as the infrastructure down stream of it will have

a view of the entire state of the system and can thus detect anomalies using either real-time
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or batch processing. An alternative to the naive solution is to let the individual sensors decide

which temporal regions of the measurement constitute an anomaly. This approach, called self-

triggering, has the benefit of the reducing the bandwidth constraints for each sensor without the

requirement for two way communication between the sensor and the sink. On the other hand, the

self-triggering has significant drawbacks. Local nodes may miss event which fall outside of their

detection thresholds, resulting in an incomplete dataset for the system-wide anomaly. Furthermore,

self-triggered detection, will incur a false positives due to the local noise effects.

1.3 Napali: hybrid edge computing for anomaly detection.

In this thesis I present, a framework called Napali which combines the strengths of the previously

mentioned methods. In Napali, each sensor node maintains two way communication channel with

the sink, as well as a temporal window containing all the recent data it collected. Each sensor’s

on board processing is used to extract features from the collected measurements, and initially only

these features, instead of the entire measurement set, are forwarded to the sink for processing. The

sink thus acquires a low resolution view of the state of the entire sensor network. While this may

not be enough for rigorous anomaly analysis and classification, properly selected features(metrics)

from every node should be enough to detect the occurrence of an anomaly. Finally, if an anomaly

is detected, the sink can requests high resolution data from all of the affected devices.

Bandwidth
Efficiency
Detection

Efficiency

Computational
Requirement

1 2

3

Figure 1.1: Comparison of the three event detection methodology across three metrics. Methods
are as follows: naive method (2), self triggering (1), Napali, hybrid solution (3)

Figure 1.1 illustrates the strengths and weaknesses of the three approaches to anomaly detec-

tion. The naive method provides the best detection ability and the smallest node computation

requirement. However, it does so at the cost of the largest bandwidth consumption. The self

triggering method has the lowest bandwidth consumption of the three. The disadvantage of this

method is twofold. First, in order to maintain a high detection rate, a reasonably low threshold for

anomalies has to be used. This may cause a large number of false positives due to local noise and

sensor noise. Second, global anomalies will often diminish in magnitude as a function of distance

from the epicenter, thus far removed sensor nodes may completely miss events. These low threshold
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events may be invaluable for reconstructing the dynamic of the anomaly propagation, however they

will be missed by the detection algorithms.

Napali’s hybrid approach provides the opportunity for much better anomaly detection rate

and background noise rejection, by correlating the features that are computed on the sensor nodes.

Napali has moderate bandwidth consumption, however the bandwidth consumption is tunable since

the features can be computed for varied temporal windows, the length of which can be adjusted

in real time. Napali requires the highest sensor node computing power, since not only does it

need to extract the triggering features from from raw data, it needs to maintain a buffer of sensor

measurements to send to the sink if an anomaly is detected.

The main operational downside of the Napali framework, is the requirement for two way com-

munication between the sink and the sensor node. In order to participate in event detection Napali

sensors need to be able to both send raw and feature extracted data, as well as receive the control

signals from the sink. In contrast, the naive and self triggered approaches only require a one way

link to send the raw data to the sink. As such, standalone devices can be retrofired to participate in

distributed event detection in the naive and self triggered approaches, while Napali requires custom

devices specifically tailored for cooperative event detection.

The advantages of the Napali methodology compared to the naive and self triggered approaches

are enumerated below:

1. Bandwidth usage is minimized: Instead of sending the entirety of raw data, only extracted

features are sent. This features will have a tiny fraction of the bandwidth requirement when

compared to raw waveforms. Furthermore, the temporal window which encompasses a single

feature can be adjusted in real time. Thus as soon as an anomalous behavior is observed in

a subset of sensors, this window can be adjusted for a finer grained feature extraction.

2. Effects of latency are minimized: Even at 1Msample/second at 16bits of resolution, the

memory requirement to store 5 minutes of raw waveform without compression are on the order

of 512MB, which is well within the realm of cheap single board computers. With compression

specifically suited to the signal of interest, the memory requirement can be reduced even

further. This gives the triggering stream sink plenty of time to respond to the anomalies in

the data and request raw waveform from the monitoring devices.

3. Sink processing requirements are minimized: Since most of the feature extraction is

already performed at the device level the triggering stream sink computational resources can

be minimized. With the advent of IOT, the computational capacity of the edge devices

is increasing. Napali exploits these resources, and thus minimizes the sink computational

requirements.

4. Sub-threshold data acquisition is a cost-effective way to improve understanding

of grid-local anomalies: The triggering stream sink makes the decision to acquire raw

5



waveform from sensor nodes. This allows researchers to collect data from devices which were

only mildly affected or not affected by the disturbance. This provides new possibilities for

investigation of disturbance propagation across the sensed area. Furthermore, subthreshold

data acquisition from leaf node allows for monitoring of the internal system state.

5. Increased resiliency with respect to power failure: In the case of the complete power

failure or communication blackout, if the monitoring device has a battery backup capability,

each sensor has a record of the entire raw waveform leading up to the power interruption.

Prior to shutdown the sensor node will transfer all of the raw data from the volatile memory

to on-board permanent storage. Once the power or communication channel is restored, select

portions of the buffer may be sent back to the data sink. This creates an additional layer of

resiliency for the anomaly detection network.

6. Increased flexibility with respect to privacy protection policies: Anomalies which

were only observed at a single point are most likely local noise and pose little value for global

state monitoring. IIt can be up to the owner of each sensor node to decide how to process

disturbances which affect their sensor. For example, a node owner may choose to record a

full waveform, only certain features, or record nothing at all. Secondly, if the saturation of

the device is high enough only a subset of them would need to send a triggering stream for

event detection, while the rest will be used for acquiring raw waveform for small temporal

regions containing global events.

7. Temporal locality allows Napali to provide improved insights into power quality

anomalies over traditional triggering algorithms: By exploiting the temporal locality

it is possible to ascertain the geographical extent of the anomaly with only coarse features.

This allows for a simple robust algorithm which may be deployed at the sink node for anomaly

detection.

1.4 The problem of power quality

Power quality monitoring, along with other smart grid domains is a field well suited for dis-

tributed sensor network monitoring.[24] [30] As the power grid moves from centralized generation

with a few centralized power plants to distributed generation with residential power production, a

distributed consumer level monitoring system becomes ever more important. Traditionally, utilities

do not monitor the quality of power besides the consumption beyond the substation level. This is

due to the fact that the last opportunity that the utility has to regulate and filter the grid voltage in

the hierarchical power distribution is at the substation, or neighborhood level. This methodology is

unsustainable, as residential renewable energy production if not properly monitored and controlled

will have an adverse effect on overall grid stability. Furthermore, lack of residential monitoring
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may lead to dangerous conditions such as islanding, where an otherwise powered-down grid may

have a small powered island sustained only by the unmonitored residential renewable generation.

Finally, residential power quality monitoring gives utility costumers an opportunity to evaluate the

quality of power delivered to their household. As consumer electronics are becoming more and more

complex, they become more sensitive to the power anomalies. Grid monitoring is traditionally the

responsibility of the utility, however in most cases utilities only have to disclose power interruptions

lasting several minutes. Small interruptions, and partial interruptions such as voltage sags, swells,

frequency fluctuations and transients will often go undisclosed by the utility and unnoticed by the

consumer, but may cause premature failure in grid connected electronic devices. It is in the best

interest of the consumers to monitor the quality of the power that is delivered to them, meanwhile

the same same monitoring system will also allows researchers and utilities to monitor the entirety

of smart grid.

(a) Voltage signal produced by a hotplate.
(b) Voltage signal produced by a desktop PC running
a complex task

(c) Line voltage recorded over 24 hours in a residential household with photovoltaic installation.

Figure 1.2: vrms waveform generated form the consumer side of the meter under various conditions.
All waveform were recorded using the OPQ Box 2.

Residential power quality monitoring presents a number of issues, as illustrated in Figure 1.2.
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First of all, it is difficult to discern which “side” of the utility meter a power disturbance came

from. Is the origin of the disturbance within a building and flow outward through the meter into

the grid, or did it originate elsewhere in the grid and flow into the building through the meter?

Consider a voltage sag generated by a 1kW hot plate shown in Figure 1.2a. Since the output

impedance of the power grid is non-zero, a high powered device can cause a significant voltage

sag affecting every device connected to the same circuit. Second, recoding the voltage waveform

resulting from non-linear load can result in privacy leaks for the end user. Consider the voltage

waveform produced by a PC running a video game as shown in Figure 1.2b. Throughout the

game loading process, the power load varies based on which components are in use. Furthermore,

regions with CPU load, hard disk load and video card load can be readily identified by measuring

the resulting voltage sag. Recording these event’s has an adverse effect on end-users privacy and

offers no immediate benefit in studying grid stability. Finally distributed power generation such

as rooftop solar has significant effect on the residential voltage waveform. Consider the voltage

waveform shown in Figure 1.2c. This waveform was recorded over 24 hours in a household with a

rooftop photovoltaic installation. Similar to the voltage sag case, since the power grid impedance

is non-zero residential power generation will cause a voltage swell during peak hours of sunlight

as evident by the waveform. Combined with the global voltage sag during hours of peak demand

(3pm) combined with the lack of PV production during that time, photovoltaics installations can

result in a daily 10Vrms swing. Residential power quality monitoring can be accomplished via

a distributed sensor network made up of power quality monitoring devices with high degree of

penetration across the end points of a power grid. Furthermore, in order to monitor the dynamics

of the entire power grid via residential line voltage monitoring, it is imperative to monitor across

multiple locations simultaneously. This combined with temporal and spatial correlations of data

produced by the sensors provides the potential for identification of grid-wide anomalies without a

high rate of false positives. Additionally, not all power quality events affect the entire grid, due to

the hierarchical structure of the power distribution.

1.5 An edge computing approach to power quality monitoring.

IEEE1159 standard describes the techniques for single location power quality monitoring. For

transient monitoring it suggests a sampling rate of at least 7680 samples/second, up to 1 Megasam-

ple/second. This implies that if a power quality event detection system relies on raw data from

all monitors((i.e. the naive method)) it would do so at a very large bandwidth cost. At 20 Ksam-

ples/second at 16bit per samples a single monitoring device would generate 300Kb/second. Several

thousand devices could easily saturate at 1Gb link with no obvious benefit. Collecting and record-

ing all of the raw waveform data from residential power quality meters for batch processing presents

some privacy concerns as outlined above. On the other hand, an on board event detection method-

ology, allows the measurement devices to select which temporal regions of measurements constitute
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an event. This is a perfect strategy from the consumer’s perspective, since it would allow for record-

ing of power quality information which directly impact their residence. As mentioned in Section

1.2, this method relies on a threshold based approach where every device has a computes several

metrics from the raw waveform and compares than to preprogrammed threshold values. Metrics

such as Vrms, fundamental frequency and THD are easily adapted for single point power quality

measurements. Temporal regions during which these metrics surpass a threshold are considered by

the device as a power quality event, and thus are recorded.

The problem with the self-triggered method is that grid-wide power quality events do not affect

the entire grid in the same way. For example, due to the grid’s hierarchical structure, a voltage sag

on one sub-circuit can manifest as as a sag of a different magnitude or even a swell on another.[17]

This may result in a situation where some of the monitoring devices will not consider a power quality

anomaly as an event, because it did not surpass the metric threshold, and simply ignore it. From

the research perspective, however, it is important to get raw data from all of the affected devices not

just, the ones that were the most affected. This additional information could be used to localize the

disturbance, as well as better evaluate it’s impact. This makes a hybrid centralized/decentralized

event acquisition strategy more attractive for distributed residential power quality monitoring. In

this scheme all monitoring devices use local processing resources to feature extract the incoming

waveforms while storing them locally for several minutes. A sink collects all of the extracted

features and looks for anomalies which are present in the feature data stream which we will refer

to as the triggering stream. If an anomaly is present in only a single device, it is highly probable

that the disturbance occurred in the residence. Depending on the user’s privacy preference, raw

data for a single device anomaly can be be recorded for later analysis, or in case of a highly privacy

conscious user, ignored. On the other hand, if the triggering stream shows an anomaly temporally

collocated across multiple devices, the entire network or a subset of the network may be queried

for raw waveform data for a temporal region which corresponds to the disturbance in the triggering

stream.

The main disadvantage of this method is that while there are plenty of power quality event

detection methodologies for single location, there has been little research into the distributed event

detection methods and metrics. The two problems are quite similar, indeed one may use the same

metrics for distributed event detection as with the single point power quality monitoring. However,

it’s also important to consider temporal locality of anomalies detected across multiple devices as

well as the effects of device synchronization. Power quality anomalies such as voltage sags and

transients will propagate through the transmission lines at the speed of light, however due to the

non-linear elements which make up the power-line junctions, a certain temporal spread in event

detection across multiple locations is expected. For large power grids such continental United

States grids, large frequency fluctuations propagate in a highly nonlinear ways. In these cases the

event propagation is limited by the inherent rotational inertia of the power generation systems,
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and the speed at which the grid protection elements such as reclosers and circuit breakers operate.

Regardless, the closer local anomalies are detected in time, the more likely are they to be a result of

a gridwide event. Unfortunately, it is unfeasible to perfectly temporally synchronize the distributed

power quality monitors. While methods such as GPS can in principle provide synchronization of

up to 10ns jitter across a large geographical region, they require a line of sight to the sky, and add

a non-trivial cost to the bill of materials for every power quality meter. Furthermore, GPS is prone

to losing signal depending on atmospheric conditions, and can be very sensitive to fluctuations in

the power supply voltage, a critical time in power anomaly detection. An alternative to GPS is

Network Time Protocol. Network time protocol can provide timing synchronization on the order of

10ms across Internet, which is on the order of 1
2 of a grid cycle. NTP performance could be further

improved by using geographically close time servers which are themselves synchronized via GPS.

Consider a situation where two devices are located in household which experience a local 100ms

power quality disturbance every 10 minutes. Even with a 10ms synchronization jitter, it will take

on average 21.5 days before the two disturbances are observed within 20ms of each other. If a

third device is introduced, it is highly unlikely that all 3 would observe unrelated local anomalies

within 20ms of each other over the lifetime of the power quality monitoring network. This implies

that combination of temporal and threshold based correlation on the feature extraction data would

allow one to build a robust residential based power grid monitoring system which would yield a

very low rate of false positives.

Power 
Production Facility

47kV 47kV

12kV 12kV 12kV 12kV

Lightning 
Strike

Residential Residential Residential Residential

Directly affected devices Indirectly affected devices

Residential

Figure 1.3: Power quality anomaly propagation example.
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1.6 Thesis claim and evaluation

Today’s big data world is plagued with issues of data cleaning and validation, even though it’s

being increasingly relied on for timely, accurate and actionable intelligence. With large ingress of

unstructured data these issues are unavoidable, and preprocessing will remain a large portion of

the analysis workload. However, in the case of sensor networks designed for a specific purpose, the

tasks of anomaly detection can be pushed to the edge of the network using the Napali methodology.

The claim of this thesis is that Napali provides a novel architecture that is both

a feasible solution to the problem of distributed power quality monitoring and

provides significant benefits over the two standard alternative architectures (the

self-triggered method, where all computation/storage is performed at the edge

nodes, and the naive method, where all computation/storage at the occurs at the

sink). Furthermore, the Napali architecture can, in principle, provide benefits

for other domains beyond power quality.

In order to evaluate the claim of this thesis, I implemented it as part of the Open Power

Quality(OPQ) system and applied it to the problems of power quality monitoring. Combined

with higher level anomaly analysis, Napali provides important services for Open Power Quality

power quality monitoring network. This network is made up of a group of monitoring devices as

well as a centralized data sink server. This system was deployed for testing at the University of

Hawaii at Manoa campus, by deploying power quality monitors across 15 University buildings. The

University of Hawaii at Manoa campus is a unique testbed for such a network, since the entire

campus is isolated to its own microgrid, connected to the municipal Oahu grid via a 46kV feeder.

Furthermore, the University of Hawaii has deployed a set of smart power monitors at the key

positions in the grid, which was used as a state-of-the-art ground truth for evaluation of OPQ

performance.

The OPQ system relies on a custom residential power quality monitor called OPQ Box, designed

specifically for distributed monitoring using the Napali framework. Instead of performing local

analysis on the voltage waveform with the aim of PQ anomaly detection, or forwarding all the

recording measurements to the centralized sink, OPQ boxes computes a small subset of features

on the input voltage waveform. These features are then forwarded to the Napali framework’s

centralized sink which performs the anomaly detection on reduced data, while the raw waveform

is retained for a short time on the OPQ Box. If the sink determines that a possible anomaly has

occurred, a request is sent to the affected and nearby devices for raw data.

The goal of Napali is not to provide a low rate of false positives for a particular type of a

power quality disturbance. Indeed, once the raw data is acquired by the sink, filtering through

the potential anomalies is trivial using well established methods. Instead, the focus of Napali is

balancing the low bandwidth required for detection with a low rate of false negatives. Furthermore,
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monitoring at the leaf notes relies on the hierarchical nature of the power grid in order to ascertain

the state of the entire power generation and delivery system. As noted in the literature, power

quality disturbances tend to propagate down the hierarchy as shown in Figure 1.3.

Consider a lightning strike on a hypothetical 12kV feeder line in a hierarchical power grid.

The directly affected devices will be the ones downstream from the disturbance. These devices

will experience the most severe effects, most notably transients, as they propagate throughput the

power delivery infrastructure. The indirectly affected devices will expedience a power anomaly

mainly attributed to the power production entities trying to compensate for the large disturbance

caused by the lightning strike. Thus, monitoring of the leaf nodes of the power delivery system can

in principle provide insights into the disturbances that originate deep inside the power distribution

network.

The Open Power Quality system is designed to be a test bed for development of new power

quality detection and analysis algorithms. It can facilitate development of new techniques and

methods for studying power system, by utilizing the Napali framework as the main anomaly detec-

tion methodology. I assessed the data collected by the OPQ network at the University of Hawaii

in order to determine if the claimed benefits of the architecture are observed in practice.

To reiterate: the central claim of this thesis is that Napali provides a feasible solution with sig-

nificant benefits. I will provide evidence for this central claim by evaluating the following subclaims

about Napali:

1.6.1 Napali minimizes bandwidth usage

Bandwidth consumption of the OPQ system was carefully monitored, recorded and compared

to the bandwidth required to transmit the equivalent amount of raw data. Furthermore, a Self-

Triggered data acquisition ran along side the Napali event detector. Thus, all three methods were

compared in bandwidth utilization. A more detailed description of this evaluation is found in

Section 4.3.1.

1.6.2 Napali mitigates device latency effects

I examined the latency limits of the triggering system. Latency effects on the Naive and Napali

event detection methodologies were evaluated. Since these limits are heavily dependent on the raw

data storage ability of the OPQ Box, latency effects were tested under various amounts of memory

allocated for this task. A more detailed description of this evaluation is found in Section 4.3.3.

1.6.3 Napali minimizes sink processing requirements

Synthetic benchmarks were carried out on the sink node to determine the scalability of the

triggering system. These scalability metrics were compared with a synthetic benchmark of running
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multiple copies of the OPQ Box analysis software on the same node. This allowed me to compare

the scalability of the sink node in the case of sending the entirety of raw data stream versus the

Napali framework’s approach of only sending extracted metrics. A more detailed description of this

evaluation is found in Section 4.3.2.

1.6.4 Napali temporal locality triggering results in a low false negative detection

Data acquired from the UH building level meters was compared with the data acquired via the

Napali triggering framework. This allowed me to establish the rate of false negatives and evaluate

the temporal locality triggering algorithm. A more detailed description of this evaluation is found

in Section 4.3.5.

1.6.5 Sub-threshold data acquisition is a viable event detection strategy

I examined a subset of events that can only be detected via the subtheshold triggering. This

was performed by analysing UH meter data, searching for events that Napali could only detect

via subthreshold detection. This provided a baseline comparison of Napali with a commercially

deployed system. A more detailed description of this evaluation is found in Section 4.3.6.

1.6.6 Napali failure resiliency and flexible privacy

Although power failure resiliency and flexible privacy are claimed benefits of the Napali archi-

tecture, they were not evaluated as part of this thesis research. Flexible privacy required a much

larger deployment, and a user study, which was beyond the scope of this project. Evaluating the

power failure resilience of the Napali framework would require a significant development effort for

the battery management system. Since complete power failures are quite rare, there is no guarantee

that a single power outage would occur on the UH campus during the deployment.

1.6.7 Napali in other domains

A final part of the central claim of this dissertation is that the Napali architecture can be

applied to other domains. Once the Napali framework was fully characterized, and its strengths

and weaknesses were well understood, I performed a literature review of other domains which

could benefit from Napali-like approach to event detection. I further characterized the kinds of

design changes to existing sensors that the Napali Framework required in order to apply it to these

domains. This work is can be found in Section 5.1.
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CHAPTER 2
RELATED WORK

2.1 Edge computing

Projections performed by Forbes suggest that by 2025, more than 75 billion Internet of Things(IOT)

devices will be connected to the Internet.[1] As the devices at the edge become more computation-

ally capable and more numerous, it becomes imperative to share the computational load not only

across the cloud services, but across the devices themselves. Furthermore, a large portion of these

devices, such as home automation, do not require a connection to the cloud in the first place.

Instead they require a connection to the edge IOT hub, or need the cloud service only to establish

or broker communication with another IOT device. Edge computing is a subset of IOT research,

which concerns itself with distributing the computational load across the devices at the edge of the

of the network. [32]

Figure 2.1: Projected number of IOT devices worldwide.[1]

This change in computational strategy may seem inconsequential at first. However, upon deeper

reflection it becomes clear that this is a major paradigm shift which brings IOT closer to the sensor

network world it is often compared with. While pioneering work in IOT always assumed a one or

two-way communication between the IOT device and the cloud service, utilizing TCP/IP as an end-

to-end protocol, it is becoming clear that this approach is unsustainable, and is often undesirable.

This communication model has clear disadvantages in wasted communication, computation, and

privacy. Furthermore, the rigid computation communication model is not flexible enough to support
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devices which are beyond the edge of the TCP/IP network without resorting to ad-hoc routing.

[13]

The first attempt to address the bandwidth and latency issues arising with widespread IOT

adoption came in form of content delivery networks (CDNs).[13] CDNs circumvent the generic

cloud information delivery problems by placing transparent caches geographically spread across

the application domain as shown in Figure 2.2. When a user or an IOT device makes a request for

an object, this request is forwarded to the nearest CDN node for processing. If the node contains

the object in its cache it is immediately forwarded to the requestee. Otherwise a request for the

object is forwarded to the centralized cloud data store, and returned to the requesting device, as

well as placed in the local cache. This approach has the advantage of moving the data closer to the

end user, thus reducing latency, and taking advantage of geographical locality. Another advantage

of this method is the added resiliency of the CDN architecture to a single point failure. If a local

cache node fails, its userbase can be forwarded to another node, although incurring additional

latency. Additionally, if a centralized data store becomes unreachable, the local cache nodes can

to some extent mask it’s outage by forwarding the data available locally. This approach does have

some drawbacks. While it makes it easier to enable faster transactions regarding data, it is not

trivial to move application logic to the local cache nodes. Furthermore, the CDN methodology, still

relies on a central mediator for device communication, even if the devices are located in the same

room.

Figure 2.2: Content delivery network architecture. As described in the Google patent.[13]

In an attempt to support a more diverse IOT ecosystem, current research is focused on moving

the cloud service ever closer to the edge of the network. Since the majority of IOT devices are

located within one hop of the Internet, the next logical place to locate a content provider is at

the wireless basestation.[32] These servers, commonly referred to as cloudlets or fog servers, are

collocated with various wireless basestations, which allows them to provide a location specific
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service to the user without using the Internet. This approach also provides uniform access and

simplifies intercommunication between a variety of devices, including those that don’t use TCP/IP.

Unlike the localized cloud cache approach relied on by the CDNs, fog servers are built with the

notion of moving not only data but also the application logic to the edge of the network. To

facilitate inter-device communication between the devices using differing wireless protocols, fog

servers can no longer rely on TCP/IP routing. Instead, TCP/IP becomes yet another transfer

protocol along with Bluetooth, Zigbee, 3g etc, with routing between the devices implemented as a

software service.[36] A few use-cases of such technology are already found in industry. Examples

of these include airline/bus in-flight entertainment, and shopping mall directory apps. A block

diagram of this infrastructure is shown in figure 2.3. In the future, emerging technologies which are

sensitive to latency, such as virtual and augmented reality will benefit from fog computing, since

it’s inherently lower latency than the cloud counterparts.

Figure 2.3: Fog computing use in transportation. The bus cloudlet provides a cache for com-
mon data such as commuter schedules and traffic information, while routing other queries to the
Internet.[36]

With the architecture for low latency communication between the edge devices and the fog

provider established, the state of the art in edge computing research is focused on intelligent

sharing of the computational resources in the fog system. Edge servers generally have far more

computational capacity than the edge device, however, they service many such devices. Addition-

ally, due to the fickle nature of radio links connecting the edge device to the fog service, the work

sharing protocol must be able to cope with link and packet loss. Finally, in the case of battery

powered devices, the energy cost of transmitting the computational job, and receiving its result

may exceed the cost of performing the computation locally. Finally, with mobile edge nodes, such

as smart phones, and smart cars, computational offloading algorithms must be able to handle con-

stant network reconfigurations as the edge nodes enter and leave the fog server geographical area.

A number of algorithms have been proposed for efficient and robust computational sharing in fog

environments. [28] [39] [40]
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Napali fits in-between the CDN and Fog server architectures. The power quality disturbances

are generally localized to a specific area, so a sink placement which covers a small geographical area

is preferred in order to reduce latency and reduce unnecessary communication with the centralized

cloud location. Furthermore, sink-driven measurement rate allows the OPQ Box to dynamically

scale the computational and communication overhead. Finally the event, classification and analysis

are similar to the computational offloading strategies currently under development in the edge

computing field.

2.2 Distributed Power Quality Monitoring

Power quality monitoring is a long established field in the smart grid domain. However, the

vast majority of research so far has focused on single point power quality monitoring.[34] Such

research has extremely useful applications in industry, since it allows one to ascertain the absolute

quality of the delivered power at a given location. However, since power quality disturbances can

originate both from local sources and from gridwide disturbances, single point monitoring is not

particularly useful for smart grid research. Several projects have developed a distributed approach

to power quality monitoring, the most prominent being the FNet project and the Power Standard

Lab PQube deployment.

The FNet project designed, manufactured and deployed a Phase Measuremnt Unit (PMU),

across over 300 locations across the united states.[44] PMU devices plug into an outlet, and sample

the power line voltage at the rate of about 1.5kS/s. The sampling is disciplined by GPS, and as

such FNet devices are extremely sensitive to voltage frequency and phase angle. The precision of

the FNet devices is 0.5mHz for frequency and 0.02◦ for phase angle. Collected data is sent to

the collection service at 100ms intervals via the Ethernet connection. Using these devices FNet

was able to observe several large power disturbances in the US power grid. The robustness and

sensitivity afforded by the GPS receiver makes this project an excellent source of frequency data

across large geographical area, however, the sampling rate of 25 samples per grid cycle is far too

low to properly sample fast transients and sags. Furthermore, FNet provides no methodology for

acquiring raw data for event disturbances which it records.

Power Standards Lab (PSL) has been an industry leader in power quality monitoring, and has

authored several standards on the topic. Furthermore, PSL has developed and deployed a large

number of power quality monitors called PQube across the world. The exact number of deployed

devices is uncertain since a lot of the devices are deployed industrially and are not available to

the public. However PSL has several publicly available devices, as well as several PQ datasets

accessible for smart grid researchers. PQube devices are an industry standard for power quality

monitoring, sampling at 12.8kSps for both the voltage and current waveforms.[2] Each PQube

device is supplied with a NIST certificate of compliance and complies with the IEC 61000-4-7:2002

standard for PQ measurements. Incidentally, this standard was authored in part by the PSL staff.
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Similarly to the FNet PMU, PQube devices are GPS disciplined, additionally the sampling is phase-

locked to the voltage waveform allowing for an even more precise metric extraction. Finally each

PQube device is configurable with custom thresholds which allow it to record raw PQ event data

for the location it’s monitoring. PQube offers a centralized data collection option with flexible

communication schemes ranging from Ethernet to Cellular. Since PQube devices monitor current

in conjunction to voltage, its installation requires it to be placed into the electrical box of the

target, by a licensed electrician.[38] Furthermore, the GPS synchronization requires addition of

extra conduit to the electrical box to allow for an antenna. Finally, since the PQube devices are

designed for single location measurements, distributed event detection using the PQube network is

particularly difficult, with a lot of low magnitude gridwide events being incomplete or missing.

Unlike the single point monitoring solutions, the Napali framework is incapable of operating as

standalone PQ monitor without a cloud sink. Furthermore, even with the event detection sink, the

goal of Napali is to reject local anomalies in order to reduce the communication and computational

overhead. While not as sensitive as the PQube device, the deployment price per unit is two

orders of magnitude lower, while providing better sensitivity than compared to the FNet device,

when running with GPS. The ability of OPQ Box nodes to utilize NTP, with WIFI connectivity,

means that the OPQ Box deployment is much simpler than the FNet and PSL offering, without

requirements of a clear view of the sky or additional wiring for Ethernet and GPS antennas.

Finally, Napali distributed event detection system allows for acquisition of the entirety of the

PQ disturbances including in locations where the disturbance has been greatly attenuated by the

electrical distance. Thus, Napali is able to provide a more complete picture of the disturbance

propagation throughout the smart grid.

2.3 Anomaly detection in Power Quality Monitoring Networks.

Anomaly detection in PQ monitoring networks remains an active topic of research. The goal

of PQ event detection is to isolate the temporal regions where the voltage or current waveform

deviates from the nominal by a given threshold. In some cases the aim is simply to notify a higher

level control system in a realtime manner that a disturbance is taking place. In other cases, the

goal is to acquire the raw disturbance data for off-line analysis. Most of the detection methods rely

on statistics and thresholding in order to detect PQ disturbances. Most of the literature concerns

itself with single point detection, for purposes of protection of equipment downstream.[14][18] [33]

Distributed power quality projects will generally utilize single single point detection across multiple

devices in order to reconstruct gridwide propagation.[38]

With a wide deployment of smart meters, PQ researchers gain access to a networked platform

which is perfectly positioned for PQ monitoring.[15] The major issue for smart meter real time

monitoring is bandwidth constraints. Smart meter deployment is envisioned to communicate via a

mesh network with a stationary or mobile base station used for data aggregation. As such the band-
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width and connectivity is limited, thus requiring methodology which is capable of event detection

in such environments. Generalized local likelihood ratio detection is one method for overcoming

these limitations. This approach requires only a single bit to be forwarded from each smart meter

indicating whether a disturbance is taking place or not. These bits are aggregated at the “master”

meter, and if their sum exceeds a threshold a higher level control system is notified of the ongoing

disturbance.[22] This approach is resilient to bandwidth limitations, and communication instability,

however tuning thresholds for each individual meter requires a significant manual effort.

Systems designed for distributed PQ event detection using custom meters are prevalent in

literature. A study at CERN utilized PQube devices with gapless recording which were later

analyzed off-line, in order to ascertain the propagation mechanics of PQ events.[17] In a realtime

domain Shang Li and Xiaodong Wang extended their work in [22] from smart meters to standalone

devices, again advocating for single bit statistical based triggering generated by asynchronous

meters.[21] Unfortunately their work has never been verified beyond simulation. The Transimeter

project utilized an analog hardware event detector comprised of a high pass filter and a comparator

for transient detection. These devices had two data paths for the voltage waveform, one to the

National Instruments DAC board, one to the hardware trigger circuit. If a trigger circuit detected

a transient, a flag was set on the NI DAC, which would in turn instruct the connected PC to send

the data to the central server.[10] Unfortunately, the lack of cooperative detection and an inflexible

trigger circuit makes this approach unappealing for modern power quality monitoring. Some of the

more exciting work in PQ detection is modeling the most efficient placement of PQ meters in order

to provide complete coverage for the power grid. [41] Another is using distributed detection for

localization of the event source.[29] [31]

Napali differs from the smart-meter approach in the use of WiFi for communication, which

greatly decreases the communication constraints of the system. Since the OPQ Box is always

connected to the power grid it is monitoring, power concerns are minimal. This allows Napali to

implement more robust computational and communication strategies, not commonly possible with

smart meter PQ monitoring. Since the triggering stream is generated in software, it is possible to

switch the detection metrics without redesigning new hardware. Napali combines both cooperative

PQ event detection and PQ event acquisition which makes it useful for future PQ event localization,

and propagation research.[29] [31]
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CHAPTER 3
OPEN POWER QUALITY

Figure 3.1: Block diagram of the OPQ Power Quality monitoring system.

The Open Power Quality (OPQ) power quality monitoring network utilizes residential power

quality meters, called OPQ Boxes, in order to detect anomalies in the electricity distribution across

the Oahu power grid. In addition to OPQ Boxes, the OPQ project utilizes cloud-based aggregation

services for power quality event detection, classification and display. The block diagram of the

OPQ network is shown in Figure 3.1 .

The major components of OPQ are:

• OPQ Box: An open source power quality meter which conforms to Napali Framework re-

quirements for the ”source”.

• Makai: data aggregation and event detection service that I designed and that runs as part of

the sensor network ”sink”.

• Mauka: event analysis and classification service designed by my colleague Anthony Christe.

The following sections describe the OPQ network components, services and protocols.

3.1 OPQ Box

OPQ Box is a power quality meter I designed for the OPQ project, which focuses on providing

the means for cheap, extensible and accurate residential power quality measurements. The block

diagram of the current revision of OPQ Box, OPQ Box2 is shown in Figure 3.2a. A complete device

is shown in Figure 3.2b.

3.1.1 Hardware

The power system of the OPQ Box2 electrically isolates most of the device from the AC mains

power. An isolated AC-DC converter generates 5Vdc from the mains 120Vac. 5V is used to power the

Raspberry Pi, equipment connected to the expansion port, 3.3V regulators and voltage reference
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(a) OPQ Box2 Block Diagram. The power path is in
red, signal path is in green and the digital IO is in
black. (b) OPQ Box2 in an ABS plastic enclosure.

Figure 3.2: (a) OPQ Box2 block diagram and (b) production OPQ Box ready for deployment

and an isolated DC/DC converter. 3.3V is used to power the isolated end of the isolation amplifier

as well as the STM32F3 analog to digital converter/digital signal processor (ADC/DSP). The hot

side of the isolation amplifier is powered from the isolated DC/DC converter. This allows OPQ Box

to function with a battery attached to the expansion port, so that it may retain data and continue

to operate during a power outage.

The analog signal path of the OPQ Box2 is complicated by the fact that the STM32F3 AD-

C/DSP is electrically isolated from the mains power. A previous iteration of the OPQ Box, OPQ

Box1, overcame this by employing a small circuit board mount isolation transformer. Unfortunately

it was found that the frequency response of these transformers varied wildly between individuals,

thus incurring a lengthy calibration process for each device. Design on the OPQ Box2 solved this

issue by using an AMC1100 isolation amplifier as the isolation component. Internally AMC1100

consists of a single die comprised of a Σ∆ analog to digital and digital to analog converters. These

converters are separated by a silicon glass region on the integrated circuit which acts as a coupling

capacitor. Since the signal passes the isolation boundary as a Σ∆ encoded digital signal, it incurs

no distortion and no additional calibration is required. In order to match the dynamic range of

the AMC1100 the 120Vac is passed through the resistor divider to attenuate it to 120mVac. The

input and output of the isolation amplifier is filtered with a passive first order anti-aliasing filter.

The isolated signal is then digitized via a 16bit ADC of the STM32F3 DSP at 12KSps, which

gives 200 data samples per grid cycle. Internally the digitization process runs asynchronously with

respect to the DSP CPU, in order to minimize timing jitter. It was verified that the sampling jitter

of the ADC is less than 1us, however due to limited precision of equipment an exact figure was

not established. Data stream in its digital form is transferred to the Raspberry Pi single board

computer (SBC) for analysis.

Raspberry Pi SBC is responsible for signal analysis and anomaly detection. The Raspberry Pi
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Figure 3.3: Block diagram of the OPQ Box 2 software stack.

model used in OPQ Box is the Pi Zero W equipped with 256MB of main memory and a single

core 1GHz ARM11 CPU. Furthermore, Pi Zero W is equipped with an on-board 802.11n WIFI

transceiver, which removes the need for an external WIFI dongle used in previous OPQ Box devices.

3.1.2 Software

The software stack of the Raspberry Pi aims to deliver a full featured power quality analysis

framework despite its rather limited hardware capabilities. A block diagram of the software stack

is shown in Figure 3.3. Digital data is transferred from the DSP to the Raspberry Pi via Serial

Peripheral Interface, with the Pi acting as the master and the DSP as a slave device. A hardware

interrupt line is used to inform Pi software that the DSP is ready for the data transfer. During the

initial design of the OPQ Box 2 software, SPI data transfer was attempted in userland. However

due to the lack of support for DMA in the SPI kernel-to-userland bridge, a large portion of the

CPU time was spent facilitating data transfer, resulting in degraded analysis performance as well

as missed data samples. Current revision of the OPQ Box 2 software stack utilizes a kernel driver

for management of SPI bus. Internally the OPQ driver maintains a ring buffer of 16 windows

each 200 data samples in size. Upon receiving the interrupt for the DSP, the CPU sets up the

DMA transfer and the DMA engine transfers a 200 sample window into the kernel memory without

CPU interaction. This scheme requires the CPU to only service 60 interrupts a second, with each

interrupt requiring on the order of 100 instructions, for a CPU utilization of less than 1% in normal

operation. Userland applications communicate with the kernel driver using a file descriptor, where

every read system call yields 200 samples of raw waveform. Thus the smallest window that a

userland application may process is a single AC cycle of the grid mains.

The userland component of the OPQ Box 2 software is a multi-threaded extensible analysis

framework called Triggering. The reader thread is responsible for transferring and accumulating

data from the kernel driver. The smallest data buffer that the Triggering application processes at

any given time is 10 grid cycles or 2k samples. Once the cycles are transferred to the userland and

timestamped, they are passed to the analysis thread for feature extraction, as well as to the Raw

Data Ring Buffer (RDRB). Since internally all data is addressed using shared pointers, during data

duplication no copying is required. RDRS is capable of buffering up to an hour of historic data

before it’s overwritten resulting in the RDBS maximum size of 100MB.
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Analysis thread of the Triggering application performs feature extraction of the raw data win-

dows of 2000 samples. Four metrics are extracted from the data stream:

• Fundamental frequency.

• RMS Voltage.

• Total Harmonic Distortion.

• Transient.

3.1.3 Fundamental Frequency

Fundamental frequency is calculated by computing the zero crossings of the AC waveform. Since

a sinusoid has two zero crossings for a full cycle the frequency can be calculated as:

f =
1

2
n

k=n∑
k=0

∆tk

(3.1)

Where the ∆tk is the k’th time between two adjacent zero crossings. In order to improve the

accuracy of the frequency calculation one must first filter out as much noise as possible. Since our

sampling rate is quite high (12kSps) and the fundamental frequency is quite low (60Hz) it is very

computationally expensive to perform this filtering in a single step. Instead filtering is accomplished

via a set of two finite impulse response (FIR) filters shown in Figure 3.4b and 3.4d. First the Down

sampling filter is applied to the raw waveform, which results in the frequency response shown in

Figure 3.4a. As is evident by the plot the frequency content of the result is 0-600Hz, Thus it can be

downsampled to the N
10 , or 200 samples without aliasing. Next the low pass filter is applied to the

downsampled waveform with the frequency response shown in Figure 3.4c.This resulting frequency

content is 0-100Hz, thus all of the higher frequency harmonics and noise are removed. Finally

the twice filtered downsampled waveform is used to estimate the fundamental frequency according

to the Equation 3.1. The zero crossings themselves were calculated by using linear interpolation

between two points which bracket the time axis.

All electrical generation systems connected to the grid run synchronously with each other,

meaning that while small variations in voltage are common across locations, the fundamental

frequency and phase must remain strictly in sync. This effect is demonstrated in Figure 3.5, which

is a frequency fluctuation event recorded on November 8 2017. While the two devices were separated

by ten miles, their frequency measurements track closely together.
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(a)

(b)
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(c)

(d)

Figure 3.4: Filters used for mains frequency calculation. (a) Downsampling filter gain. (b) Down-
sampling filter impulse response. (c) Lowpass filter gain. (d) Lowpass filter impulse response.

3.1.4 Root Mean Square Voltage

Root mean square voltage (Vrms) in electrical power is the equivalent value of DC voltage which

would dissipate the same power in the resistive load. Vrms is a convenient measure for detecting
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Figure 3.5: Frequency measurement across two devices recorded during a lighting strike.

voltage sags and swells, since they result in nominally higher and lower computed value. For the

sinusoidal signal Vrms can be calculated from the peak to peak value (Vpp) as:

Vrms =
Vpp

2
√

2
(3.2)

It is common for multimeters to employ the equation above for computing Vrms. However this

equation is only valid for a perfect sinusoid, and thus does not result in a suitable metric for

identifying power quality disturbances. Instead OPQ Box 2 computes Vrms as follows:

Vrms =

√√√√ 1

n

k=n∑
k=0

V 2
k (3.3)

Similarly to the frequency calculation OPQ Box 2 uses a 10 cycle window for a single Vrms cal-

culation, however unlike the frequency calculation the input is not filtered a priori. An example

of a power quality disturbance which exhibits low Vrms is shown in Figure 3.6a and 3.6b. These

disturbances are the result of a lighting strike recorded by two OPQ Box 2 devices on Nov 1, 2017.

3.1.5 Total Harmonic Distortion

OPQ Box calculates THD using industry standard methodology. In the power delivery industry

THD is defined as:

THD =

√∑
V 2
n

Vf
∗ 100% (3.4)
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Figure 3.6: A lightning strike recorded by two OPQ Box 2 devices separated by 10 miles. (a) A
lightning strike manifested as a Vrms dip which lasted 11 cycles. (b) As a consequence of using
NTP these devices have a 1

2 cycle mismatch in reported timestamps.

Where Vf is the fundamental 60Hz power and Vn is the power at nth harmonic. It should be noted

that in the power quality domain THD is expressed as a percentage as opposed to dB√
Hz

as used

in other disciplines. Operationally, OPQ Box computes THD for 10 cycles of the fundamental

frequency. First an FFT transforms the real voltage samples into its frequency components. Next,

the square of the harmonic bins is accumulated and scaled by the magnitude of the fundamental

power.

Figure 3.7: A common THD trend across two OPQ Box devices each deployed in the two Flexible
Response to Ongoing Growth buildings on UH campus.

Figure 3.7 shows a common trend observed by all OPQ Box devices installed on the UH campus.

For clarity only two devices are shown. It is assumed that the large drop observed daily from

approximately 6pm to 6am corresponds to the automatic response of the power delivery system to

the reactive power in the grid, by deploying a large capacitor bank to compensate for the current

phase lag.
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3.1.6 Transient Detection

OPQ Box transient detection is performed via filtering out of the fundamental frequency via

an FIR high pass pass filter and searching for a maximum value in the remainder. The high

pass filter has a cutoff of 400Hz, and the filter coefficients and response are shown in Figure 3.8b

and Figure 3.8a respectively. The result of the high pass filter operation is shown in Figure 3.8.

Figure 3.8c shows a synthetic signal generated via a SDG1025 signal generator and fed into the

OPQ Box. This signal contains a 5Vpp transient injected at 11ms. Filtered signal is shown in

Figure 3.8d, with the fundamental removed and the transient preserved. OPQ Box scans for the

highest sample in the filtered waveform and uses its magnitude as a transient detection metric.
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Figure 3.8: THD detection filtering. (a) Filter gain. (b) Filter response. (c) A 5V transient
superimposed onto a fundamental. (d) Filter result from (c).

It should be noted, that this transient detection method is susceptible to THD fluctuations,

since any harmonic above 400Hz will remain in the filtered waveform. However, since the THD
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information is transmitted along with the transient detection metric, they can be correlated in

downstream transient detection. This effect can be seen in Figure 3.9. This figure shows both the

THD and transient detection metric during a transient event. A small transient of approximately

1.6V was observed occurring at 2600s, while the sensitivity of the transient metric is clearly visible,

particularly between 3000s and 4500s.

Figure 3.9: THD and Transient detection metric.

3.1.7 Network Communication

Computed fundamental frequency and Vrms are transmitted to the Makai service for aggrega-

tion. Data transmission is handled using ZeroMq software stack with Curve25519 elliptic curve

encryption. Each device holds a unique private and public key, as well as the servers’ public key,

allowing both the Makai service and the OPQ Box 2 to verify its peer. Internally metrics transmis-

sion uses ZeroMq’s PUB/SUB protocol. This protocol is a publish subscribe topology, with each

message containing the topic, and a payload. Additionally ZeroMq pub-sub topology allows for

multiple sub peers with subscriptions forwarded to the publisher automatically via a side channel.

This allows for the aggregation service to be spread across multiple nodes, with minimal network

overhead.

If the aggregation service determines that an anomaly has occurred, it is able to request raw

waveform from the OPQ Box 2 RDRB via a separate ZeroMq pub sub channel. If the RDRB

buffer contains data for the requested temporal range, OPQ Box 2 transmits the available data to

the aggregation service via a push pull ZeroMq channel. Protobuf message serialization is used to

encode messages across the OPQ ecosystem.

In order to make a distributed measurement, all of the OPQ Boxes on the OPQ network

need to maintain an accurate time reference. Time synchronization across multiple OPQ Boxes is

accomplished using the Network Time Protocol. The expansion port of the OPQ Box 2 supports

a GPS receiver. However, since GPS receivers require line of sight to the sky it was not used for
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deployment. NTP performance has been verified against GPS resulting in time error of 8ms± 5ms

which is typical for NTP running over the Internet with a close by NTP server. This error is

visualized in a Figure 3.6b. With a large coincidental Vpp drop across two devices, a 7ms phase

error is clearly visible.

3.2 OPQ Makai

OPQ Makai implements the Napali Framework requirements for a “sink”. It is a distributed

extensible microservice framework responsible for receiving the triggering stream from the OPQ

Boxes, locating anomalous temporal regions and requesting raw waveform for the anomalous time

ranges. As evident from the block diagram shown in Figure 3.10, Makai consists of four major

components: Acquisition Broker, Triggering Broker, Event Service and the Acquisition Service.

Triggering Broker

Acquisition Broker

Acquisition Service

OPQBox

Encrypted Clear text

Pub/Sub
Push/Pull

Pub/Sub
Pub/Sub

Push/Pull

MongoDBOPQ Makai

Event Service
Pub/Sub

Figure 3.10: Block diagram of the OPQ Makai.

3.2.1 Triggering Broker

The triggering Broker is perhaps the simplest component of the OPQ Makai system. The

triggering stream generated by the OPQ Boxes is encrypted to preserve users privacy. In order to

minimize the CPU time spent decrypting the data across multiple OPQ services, the Triggering

Broker is used to decrypt the data and send clear text measurements across the rest of the OPQ

ecosystem. Triggering Broker uses the ZeroMq subscribe socket to receive data form OPQ Boxes,

and sends it via a publish socket to any connected client. Each publish message is published to a

topic which corresponds to the ASCII representation of the originating OPQ Box ID. This allows

services which utilize the Triggering broker to select a subset of IDs to operate on. This is useful

for load balancing the backend services, or dividing the OPQ network into separate regions with
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no electrical connections between them.

OPQ Box transmits metrics which make up the triggering stream in form of Protobuf encoded

messages. The structure of triggering messages is shown in Table 3.1.

Table 3.1: Triggering message structure.

Triggering Message

Field Type Description

box id uint32 Device ID this message originated from.

timestamp ms uint64 Timestamp corresponding to the first cycle in
the temporal window.

metrics map<string, Metric> A map of metric names to corresponding val-
ues.

Metric

Field Type Description

min f32 Minimum observed in this window.

max f32 Maximum observed in this window.

average f32 Average observed in this window.

3.2.2 Acquisition Broker

The Acquisiton Broker manages the two-way communication between the OPQ Boxes and the

rest of the cloud infrastructure. Unlike the triggering stream which originates from the OPQ Box,

two way communication is always initiated by the cloud services. Two way communication is

realized via a command response interface, where the OPQ service initiates the communication by

sending a clear text command to the Acquisition Broker, which then forwards it in the encrypted

form to the appropriate OPQ Boxes.

As mention in the OPQ Box section, all communication between the OPQ Box and Makai is

serialized using Google Protobuf. Protobuf allows for polylingual communication between software

components across network boundaries. This is particularly important in case of the Acquisition and

Triggering brokers, since they facilitate all inter-network communication. All commands between

services downstream of the Acquisition Broker and OPQ Boxes take on the form shown in Table

3.2.

In order to send a message to an OPQ Box, a client generates a Makai → OPQ Box command

containing its identity, serializes it, and forwards it to the Acquisition broker’s push port. The

acquisition broker assigns a unique sequence number to the request and stores it in an internal
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Table 3.2: Command/Response message structure.

Makai → OPQ Box

Field Type Description

seq uint32 Sequence number for the command.

box id uint32 Device ID this command will be routed to.

timestamp ms uint64 Millisecond timestamp, created on command
issue.

identity string Identity of the sender.

command Command Command payload.

OPQ Box → Makai

Field Type Description

box id uint32 Device ID this command is routed from.

seq uint32 Sequence number of the response

timestamp ms uint64 Millisecond timestamp, created on response
issue.

response Response Response payload.

synchronized key value store along with the sender identity. The message is re-serialized and sent

out to the desired OPQ Box via the broker’s encrypted pub interface. Each message sent to the OPQ

Box generates a response in form of OPQ Box → Makai message. This response is received by

the Acquisition broker via encrypted pull interface, deserialized and validated. Response sequence

number is used to determine the recipient’s identity, and the message is forwarded to the correct

recipient via the broker’s cleartext publish interface. It is important to note that the service which

generates a command and the service which receives the response need not be the same, and a

command originator may place the box response into the subscribe stream of a different service.

This detail becomes important during the discussion of the Event service. Furthermore, sending

and receiving messages occurs asynchronously, thus multiple clients can communicate with multiple

Boxes at the same time. Finally, a garbage collector cleans the synchronised key value store every

hour, removing sequence numbers which did not receive a response for an OPQ Box. These sequence

numbers and identities are logged, since a lack of a response indicates a device or a network fault,

or a buggy client.

There are four unique payload commands/responses which an OPQ Box understands. These

payloads are ignored by the Acquisition Broker and are simply forwarded to the recipient. Below

is the list of commands/responses:

• (HEALTH) Health: The health command is broadcast periodically across all of the OPQ

Boxes, in order to collect diagnostics from all OPQ devices. The OPQ Box response to this

command contains diagnostic information, such as the timestamp of the last event requested,

ip address and the name and strength of the WIFI network the OPQ Box is connected to.
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• (CMW) Change measurement window: This command allows downstream services

to vary how often a triggering stream message is generated and delivered to the triggering

broker. This is accomplished by varying the length of the temporal window used to derive

the triggering metrics.

• (RD) Send raw data: This command instructs the OPQ Box to send data from the its

raw data buffer to the cloud.

• (PLG) Plugin: Send a binary payload directly to a OPQ Box Plugin.

Data fields for each command are described in the Tables 3.3 and 3.4. Notice that an Err response

does not correspond to any commands described above. OPQBox generates this response under

following conditions:

• Command payload could not be parsed.

• start ms > end ms in case of the RD command.

• box id field does not match the destination OPQ Box.

• PLG command is attempting to route to a OPQ Box plugin that is not loaded by the recipient.

In the current implementation, OPQ Makai protocol does not support multicast addressing of

OPQ Boxes. Furthermore, due to the limitations of the ZeroMq API, there is no stable method of

querying the clients connected to a particular port. Utilities which query all available devices, such

as a periodic health check service, query the MongoDB database for a list of devices registered to

the OPQ network, and send their queries to each box individually.

3.2.3 Acquisition Service

The Acquisition Service middleware resides between the Triggering and Acquisition Brokers.

The Acquisition Service is responsible for the following tasks:

1. Computation of statistics of the incoming triggering stream.

2. Hosting plugins for triggering stream analysis.

3. Generating data event requests for OPQ Boxes.

A block diagram of the Acquisition Service is shown in Figure 3.11.
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Table 3.3: Command Payloads

HEALTH

N/A This command has no fields.

CMW

Field Type Description

measurement rate uint32 Number of cycles per triggering message.

RD

Field Type Description

start ms uint64 Timestamp defining the beginning of the re-
gion of interest.

end ms uint64 Timestamp defining the end of the region of
interest.

wait bool A flag indicating that a Box must wait if
end ms is in the future.

PLG

Field Type Description

plugin name string Name of the plugin.

message bytes Binary payload for the plugin.

Triggering Stream Statistics.

The Acquisition Service accesses the triggering stream by connecting to the publish socket of

the Triggering broker. Since the connection is managed through the ZeroMq publish-subscribe

socket, several Acquisition Services can be connected to a single Triggering broker endpoint each

servicing a subset of OPQ Boxes by subscribing to only specific devices. This functionality is used

to manage devices that the OPQ project sends for evaluation by organisations interested in the

project. These loner devices participate in their own triggering schemes, and do not contaminate

the triggering stream with messages about an unconnected grid.

Triggering messages received by the Acquisition service are buffered and stored in the MongoDB

database. There are two types of statistics accumulated by the Acquisition Service:

1. Measurements: Every triggering stream message gets converted to a set measurement.

2. Trends: One minute window of triggering stream messages get feature extracted and stored.

Measurements have a one-to-one relationship with a triggering messages and take form of Mon-

goDB documents described in Table 3.5. Measurement documents have an expire at field instruct-

ing MongoDB to clean up the measurement collection after after a predetermined time period.

Currently measurement documents persist for 24 hours.
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Table 3.4: Response Payloads

HEALTH

Field Type Description

mac addr string Mac address of the box.

wifi network string SSID of connected Wifi network.

ip string Ip address of the wlan0 interface.

uptime uint64 Device uptime in ms.

calibration constant f32 Calibration constant for the device.

pub key string Byte64 encoded public key of the device.

measurement rate string How often a triggering message is produced.

CMW

Field Type Description

measurement rate uint32 Old measurement rate.

RD

Field Type Description

start ms uint64 Timestamp defining the beginning of the re-
gion of interest.

end ms uint64 Timestamp defining the end of the region of
interest.

data Cycle[..] Data divided into single cycle windows struc-
tures.

Cycle

Field Type Description

datapoints int16[200] Raw ADC samples for one cycle window.

timestamp ms uint64 Timestamp of the last sample.

PLG

Field Type Description

OK bool Flag indicating that the command was suc-
cessfully routed to a plugin.

Err

Field Type Description

code uint32 Error Code.

Error string Human readable error string.

Trends consist of feature extracted statistics accumulated from 1 minute of triggering mea-

surements. The statistics computed are minimum, maximum and average for each box metric.
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Figure 3.11: Block diagram of the Acquisition Service.

Table 3.5: Measurement Document.

Field Type Description

box id string OPQ Box ID.

timestamp ms uint64 Millisecond timestamp.

voltage f32 Vrms average value.

thd f32 THD average value

frequency f32 Frequency average value

expire at f32 Deletion time for the measurement.

Similarly to the Measurement documents, Trend documents expire after a predetermined period of

time. Currently trends are retained for 7 days. Structure of a Trend document is shown in Table

3.6.

Triggering Analysis infrastructure.

The Acquisition Service does not include any analysis capabilities by default. Instead analysis

is performed by shared library loadable plugins. These plugins can be loaded and unloaded at

runtime, thus allowing live upgrading and testing of new analysis methods. Plugin are loaded using

libdl by searching for C function hooks which produce a Rust structure which implements a plugin

interface. The interface as well as the prototype C hook function are shown below:

pub trait MakaiPlugin: Any {

fn name(&self) -> &’static str;

fn process_measurement(&mut self, msg: Arc<Measurement>)->Option<Vec<Command>>;

fn on_plugin_load(&mut self, json: String);

fn on_plugin_unload(&mut self);
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Table 3.6: Trend Document.

Trend Document

Field Type Description

box id string OPQ Box ID.

timestamp ms uint64 Millisecond timestamp.

voltage Statistics Vrms average value.

thd Statistics THD average value

frequency Statistics Frequency average value

expire at u64 Deletion time for the measurement.

Statistics

Field Type Description

Min f32 Minimum observed during the trend window.

Max f32 Maximum observed during the trend window.

Average f32 Average computed over the trend window.

}

#[no_mangle]

pub extern "C" fn _plugin_create() -> *mut MakaiPlugin;

#[no_mangle]

pub extern "C" fn _plugin_destroy(plg : *mut MakaiPlugin);

The plugin create function is marked as no mangle which instructs the compiler to retain the

function name so it can be located by the plugin loader. It returns a mutable pointer to a boxed

type which implements the MakaiPlugin interface. Since Rust is a explicit memory management

language, and the runtime is not aware of the internal structure of the Boxed type beyond its

interface, a helper function plugin destroy is used to cleanup the plugin object during the un-

loading process. Each plugin runs in a separate thread with a synchronized queue from which it

draws measurement messages. If a plugins is not able to keep up with the triggering stream, The

Acquisition service will start dropping messages from its input queue, and a message indicating

this fault will be stored in its log. Once a plugin is loaded it will receive its settings in the form

of a JSON encoded string using the on plugin load method. This allows it to initialize all of the

internal data structures to a known state. Similarly on plugin unload method is used to inform

the plugin that it is about to be unloaded.

The processing of the triggering stream occurs in the process measurement method. This

methods takes a reference counted Measurement message in form shown in Table 3.1. Return type

of this method is an optional list of commands to forward to the Acquisition broker in form shown

in Table 3.2. All of the Commands in the list are treated to be pertaining to the same event.

37



Event Request.

Once a plugin determines that an event of interest has taken place, it will emit a list of RD

commands with structure shown in Table 3.3. Event requester will fill in the identity field with the

following string:

identity = “data ” + EV ENT TOKEN + ” ” +ACQ UUID

The “data ” prefix is used to route the messages responses from the OPQ Box to the Event

storage service. As mentioned previously, responses from device command need not return to the

same service that sent the command. Instead, the responses will be routed to a service which

is subscribed to the identity used in the request. The EV ENT TOKEN root is a 16 character

random hexadecimal string, which identifies data request corresponding to the same event. Since

a single event may contain data from multiple OPQ Boxes, and each event waveform will share

a unique EV ENT TOKEN root. The ACQ UUID postfix is used to identify the Acquisition

service which triggered the data request. Multiple Acquisition Services can be used to service the

OPQ network, and each one is identified using its own UUID identifier. This identifier may be

assigned to each service via the configuration file, or autogenerated at startup. Once the identity

of each command is filled in, each command is forwarded to the Acquisition broker for routing to

the OPQ Box experiencing a power quality disturbance.

3.2.4 Event Service.

The Event service is a microservice which stores raw data generated by OPQ Boxes in the

MongoDB Database. On initialization, the Event service queries MongoDB database for the highest

event number recorded so far, connects to the Acquisition Broker’s publish port, and subscribes

to all messages that start with the prefix “data ”. This allows the Event service to capture every

response from OPQ Boxes generated from commands issued by the Acquisition service plugins.

Once the Event service receives a data response with an identity containing an EV ENT TOKEN

it hasn’t seen before it will increment the event number, and store it in an internal key value store.

This way every future data message which contains that EV ENT TOKEN , will be appended to

the same event. ER diagram of the MongoDB event storage is shown in Figure 3.12. The Events

collection contains metadata for individual events. Box events collection contains metadata for

event information from individual OPQ devices. Finally gridfs, MongoDB’s internal file storage, is

used for storing event data.

3.2.5 Acquisition Service Plugins

The Acquisition service plugins are responsible for monitoring the OPQ Box triggering streams

and determining when to request raw data. As such, the Acquisition service plugins constitute the
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data bytes
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Figure 3.12: ER diagram of event storage in MongoDB

majority of business logic for the OPQ Makai system. There are currently four plugins developed

for this system:

1. Health Plugin.

2. Debug Plugin.

3. Threshold Trigger.

4. Napali Trigger.

Health Plugin

The health plugin is responsible for monitoring the triggering messages passing through the

Acquisition Service. It maintains a REST endpoint for reporting the OPQ Network status. Fur-

thermore the REST endpoint can be used to trigger a device for debugging purposes.

Debug Plugin

Debug plugin consists of a Lisp interpreter which can manipulate the triggering stream, and

emit triggering commands for devices. It can be used to quickly and interactively test new analysis

methods, and debug the OPQ network.

Threshold Trigger

Threshold trigger plugin is used for in-situ comparison of a naive triggering method to Napali.

Every time the Threshold plugin receives a triggering message, it will check it against global thresh-

olds. If a metric value is outside of the predetermined thresholds the Triggering plugin will latch

the timestamp and the id of the affected device. Once the metric returns to normal, Threshold

plugin will emit a request for raw data to the device which is experiencing an event. If an event
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is longer than 50% of the RDRB of an OPQ Box buffer an event will be broken up into several

shorter events. Threshold values for each metric are shown in Table 3.7

Table 3.7: Threshold values for each metric

Metric Min Max

Vrms 115Vrms 125Vrms
ffundamental 59.9Hz 60.1Hz

THD N/A 5%

Trans N/A 8V

The Threshold Trigger plugin functions in the same way as a self-triggering device. Since

this method of event detection does not rely on intra-box information sharing, it functions in the

same manner as if the OPQ Box itself is performing event detection. This allows for experimental

comparison of the Napali method efficiency with the self-triggered methodology.

Napali Trigger

Napali Trigger plugin implements the Napali event detection method. Napali Trigger state

machine is kicked off the same way as the Threshold trigger. If a received metric value is outside

of the predetermined thresholds Napali plugin will latch the timestamp and the id of the affected

device. Similarly, once the offending metric from all devices return to normal, Napali plugin will

emit a request for raw data to the device which is experiencing an event. The main difference

between the Napali trigger and the Threshold trigger are two-fold:

1. An event is not considered finished until every device’s metrics return to the nominal threshold

range.

2. Metric value which does not surpass the threshold but is placed 3σ of the mean, will mark

the device as an event participant.

The first difference allows Napali to track a propagation of a fault throughout the power delivery

network. Furthermore, during a lifetime of a power quality event, it may shift from one metric

to another. As the disturbance travels through the power-grid, Napali will aggregate all of the

temporally localized disturbances into one event. The second disturbance allows for recording of

sub-threshold data to be acquired from devices which did not pass the threshold, but exhibited

anomalous behaviour.
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The mean and standard deviation are calculated using two first order IIR filter loops as shown

in Equation 3.5:

µn+1 = (1− α) ∗ µn + α ∗m

µ2n+1 = (1− α) ∗ µ2n + α ∗m2

σ2n = µ2n − (µn)2

σn =
√
σ2n

(3.5)

Where µ is the mean, σ is the standard deviation, m is the new sample and α is the decay parameter.

Notice that (µ)2 is the square of the mean, and µ2 is the mean of the squares. The α parameter

determines the memory of the filter, and can be computed as:

α = 1− e2π
Tsample
Tmemory (3.6)

Where Tsample is the sampling rate of the system, 1s for OPQ, and Tmemory is the desired response

of the system.

Using an IIR filter for mean and standard deviation calculation is computationally cheaper than

using a FIR window. Furthermore, using the IIR filter makes it trivial to tune the response of the

system during runtime.

3.3 OPQ Mauka

The OPQ Mauka service is responsible for higher level classification and filtering of the anomalies

generated by the OPQ Makai.[5] Since anomalies generation only relies on the triggering stream

features and not raw data, the OPQ Makai is not able to ascertain if the anomaly is an actual

power quality event, event type, or its severity. The OPQ Mauka on the other hand operates on

the raw data, thus it is able to perform high level analysis to meet industry standards for vent

classification. The block diagram of the OPQ Mauka is shown in 3.13.

Currently OPQ Mauka supports the following classification strategies:

• ITIC Power acceptability curve used to classify short term voltage sags.

• IEEE 1159 Voltage Voltage classification based on the IEEE 1159 power quality standard.

• Brownout Detection Classification of medium to long term voltage sags.

• Total Harmonic distortion Classification of events via harmonic analysis.

Once the anomaly is classified by OPQ Mauka, and the power quality characteristics are con-

firmed, it may be aggregated with other anomalies to form a disturbance. Disturbances are com-

posed of raw box data, analysis results as well as expert annotations and other metadata.
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Figure 3.13: Block diagram of the OPQ Mauka.

3.4 OPQ View

OPQ View is the primary user interface to the OPQ ecosystem. View is written in JavaScript

using the Meteor framework, and provides a robust and easy to use interface to the OPQ Box

triggering stream, Makai triggering anomalies, and to the Mauka PQ disturbances. Furthermore,

View provides an administration interface for initial setup and maintenance of the OPQ devices,

and services. Finally OPQ View monitors the health of the OPQ components, keeping track of the

individual box uptimes, and component failures. A screenshot of the recent OPQ View build is

shown in Figure 3.14
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Figure 3.14: Screenshot of a recent OPQ View build.
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CHAPTER 4
EXPERIMENTAL EVALUATION

Validation of the Napali approach is intrinsically linked to validation of Makai, both with

synthetic benchmarks and in-situ. Since OPQ utilizes a custom power quality measurement device,

its performance needed to be characterized prior to Makai evaluation.

4.1 OPQ Box Synthetic Evaluation.

A mentioned in Section 3.1.2, OPQ Box generates 4 metrics in order to enable event detection.

In order to evaluate the limits of detection capabilities for each one of these metrics, an OPQBox

was fed with synthetic waveform generated by the SDG1025 function generator. By utilizing a

function generator the entire device including the hardware analog front end could be evaluated.

Since the function generator is not capable of supplying 120Vrms signal, a 120mVrms signal was fed

on a low side of the OPQBox resistor divider, while the device was powered via an external 5V

power supply.

4.1.1 Fundamental Frequency

Fundamental Frequency computation was evaluated by generating a 60Hz sine wave via the

SDG1025 and supplying it to the OPQBox. Calculated frequency was accumulated by analyzing

the device triggering stream. The resulting histogram is shown in Figure 4.1 As shown, the resulting

distribution collected frequencies acquired over 2000s has a σ = 420uHz. In other words 99.7% of

the collected measurements were between 59.998Hz and 60.001Hz.

4.1.2 Root Mean Square Voltage

Similarly to the fundamental frequency characterization, Vrms calculation was evaluated by

supplying the OPQBox with a 60Hz, 120mVrms sine wave via the SDG1025. Calculated RMS

was accumulated by analyzing the device triggering stream. The resulting histogram is shown in

Figure 4.2

As shown, the resulting distribution of collected Vrms measurements, acquired over 2000s has a

σ = 9.34mV .

4.1.3 Total Harmonic Distortion

THD performance of the OPQBox was validated by injecting a various harmonics of 60Hz super-

imposed onto the 60Hz, 120mVrms sine wave into the device via the SDG1025 arbitrary waveform

generation capability. THD calculation results were acquired from the OPQBox triggering stream
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Figure 4.1: OPQBox frequency response.
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Figure 4.2: OPQBox Vrms response.

for analysis. As expected, the resulting detection efficiency remained self-consistent across all har-

monics. Figure 4.3 shows a histogram of the error in THD values computed from a 60Hz, 120mVrms

sinewave superimposed with a 240Hz 1.2mVrms sine wave. This measurement is equivalent to 1%

THD at the 4th harmonic.

As shown, the resulting distribution of collected THD measurements, acquired over 2000s, has

a σ = 0.001%.
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Figure 4.3: OPQBox THD response.

4.1.4 Transient Detection

Transient detection performance was evaluated by injecting a transient superimposed onto the

60Hz, 120mVrms sine wave into the device via the SDG1025 arbitrary function generation capability.

Transient detection results were acquired by capturing and analyzing the device triggering stream.

Transients of various shapes and magnitudes were tested.
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Figure 4.4: Transient detection metric with a 5V transient(a), and 0.5V transient(b)

Figure 4.4 shows the resultant transient detection metric for two transients. The shape of the

transient is the same and is shown in Figure 3.8c. Interestingly, in case of a 0.5V transient the
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metric results in a much tighter distribution with σ = 0.015V , while in the case of a 5V transient

the distribution exhibits a lower sideband tail. Since the transient is injected in a random position

in the cycle, and the sampling rate of the DG1025 is significantly higher then sampling rate of

the OPQBox(25Msps vs 12Ksps), the peak of the transient will sometimes fall in between the

consecutive samples of the OPQBox. In the 0.5V transient case this effect is alleviated, since the

transient is so small. Regardless, the result shown in Figure 4.4b is presented only as a synthetic

benchmark, since OPQBox is expected to operate in an environment with THD larger then 0.4%

at > 400Hz required to detect a 0.5V transient. As such, the figure of σ = 0.125V should be

considered valid for the OPQBox transient detection capability. Since this metric is only used in

transient detection and not characterization, it was found to be sufficient.
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4.2 Real-world evaluation: The University of Hawaii deployment.

As part of the Napali evaluation, the OPQ system was deployed across the University of Hawaii

Manoa campus (UH). This location was advantageous because it is an isolated microgrid connected

to the Oahu powergrid only via a single 46kV feeder as shown in Figure 4.5. Another advantage

of the UH campus is the high number of smart meters deployed across various levels of the power

delivery infrastructure. While the purpose of these meters is to monitor the power consumption,

they do include some rudimentary power quality monitoring capabilities. Data from the campus

deployed meters was used as ground truth for comparison against the measurements, and for

analysis performed by the OPQ project. The location of smart meters in the grid topology is shown

in Figure 4.5 as the M nodes. As evident by the meter location none of them were monitoring the

consumer level power and mainly focused on the higher voltage power delivery. This placement

was a consequence of the smart meters’ role as a consumption monitor, and thus the deployment

of the OPQ Boxes at the residential level complemented UH power quality monitoring capabilities

without introducing redundancies.

The University of Hawaii power grid supplies a highly diverse infrastructure. Beyond traditional

residential equipment such as computers and consumer grade electronics, the UH power grid powers

scientific and laboratory equipment, machine shops, and server farms. All of these elements have

varying requirements/tolerances for power quality anomalies as well as different levels of power

quality “pollution”. Furthermore, some of the electricity consumers in the UH campus are entirely

unique. For example, the free electron laser located in the Watanabe Hall is one of the only free

electron lasers in the world, and the impact/sensitivity of power quality on the instrument are

completely unstudied.

M

46kV 12.4kV 480V

M

HVAC

120V

Instrumentation

OPQBox

Consumer Equipment

HECO Subgrid Building Consumer

Figure 4.5: University of Hawaii at Manoa power delivery infrastructure.

There are 74 smart meters deployed across the UH campus. These meters measured the fun-

damental frequency Vrms, power consumption, reactive power, and power factor. Data from these

meters was cross-referenced with the Napali detection system in order to ascertain its benefits.

OPQ Box placement was specifically selected to cover as much of the University of Hawaii power

delivery infrastructure as possible. The OPQ Box deployment is shown in Figure 4.7. By spreading

out devices across the entire power grid, OPQ system is able to monitor the propagation of power
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quality disturbances throughout the UH power grid. Consider the event shown in Figure 4.13.

Figure 4.6 shows the same event with the fundamental and harmonics suppressed using a notch

filter bank. Furthermore, a location annotation is added to indicate the device deployment. The

most affected devices were located at the Physical Plant and Hamilton Library, recording a 60Vpp

transient. Incidentally, both of these devices are monitoring a subgrid rooted at transformer(MA4).

Another device that recorded this event was located in Watanabe Hall. This device recorded a

30Vpp transient, still above the threshold for detection. This device was monitoring the the subgrid

rooted at the transformer LA4. The final device was located at the parking structure entirely across

campus. This device recorded a 15Vpp transient, about 1V below the required magnitude for the

threhold based detection. However, Napali was able to determine that the parking structure OPQ

Box was affected by the disturbance, and requested the raw data regardless.
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Figure 4.6: Filtered Transient from event shown in Figure 4.13

From the data gathered by Napali as shown in Figure 4.6, it seems apparent that the disturbance

originated at the subgrid rooted at the transformer MA4. The Watanabe device was affected due to

the short geographic and electrical distance to the MA4 subgrid. By the time the transient reached

the parking structure, it was significantly attenuated by the transformers and transmission lines.

It was only detected due to the sub-threshold detection ability of the Napali framework.
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Figure 4.7: OPQ Box locations and device IDs across University of Hawaii.
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4.2.1 Selection of α parameter

Napali maintains a mean and a standard deviation for each metric generated by the OPQ Box.

Instead of maintaining a window of N latest datapoints a lossy mean algorithms is used to derive

the statistical representation of the data as shown in Equation 3.5. This allows for a low overhead

metric computation regardless of the sliding window length. Nonetheless, Napali maintains 1 hour

of captured metrics in memory along with 1 day of metrics in the database.

The main tunable parameter in Napali is the α coefficient used in the low pass filter as shown in

Equation 3.5. This parameter determines the memory of the lowpass filter used in the calculation

of the mean and the standard deviation of metrics from OPQBox data stream. These statistics are

in turn used during the Napali triggering process to locate sub-threshold gridwide events.

A smaller α parameter corresponds to a longer memory in the low pass filter as shown in

Equation 3.6. This is further visualized in Figure 4.8. In particular this Figures 4.8a and 4.8b

show the response of the IIR low pass filter to the simulated frequency measurements. The dashed

red line represents the frequency measurement, solid red line represents the filtered mean, and the

blue line represents the standard deviation. Figures 4.8a shows the filter response for α = 0.5 or

Tmemory ≈ 10s. As evident from the plot, the mean and the standard deviation quickly recover

from the transient and return to their nominal values. Furthermore, the mean is closely tracking

the random fluctuations present in the measurement. Figures 4.8a shows the filter response for

α = 0.05 or Tmemory ≈ 123s. While the stimuli remains the same, it takes significantly longer for

the statistics to recover. Additionally, the mean no longer tracks the frequency fluctuations present

in the simulated data.

Picking the α parameter for Napali is extremely domain specific, as it depends on the frequency

content of the triggering stream. Intuitively, the Tmemory parameter needs to be long enough

to adjust to gradual changes in the triggering stream for the mean calculation, and dampen the

standard deviation for detection of multiple consecutive anomalies. In addition, it needs to be short

enough to converge on the mean and the standard deviation during a step-like transition in the

triggering stream.

Luckily, in the Power Quality domain the Napali α selection is fairly forgiving. This is demon-

strated in Figure 4.9. This graph represents the amount of time that Napali considered one of the

metrics to be outside of the 3σ of the mean for various values of α. The triggering stream used

to generate these values was captured over 24 hours by one of the OPQBoxes deployed on the

University of Hawaii campus. All devices deployed thus far have followed a similar pattern. With

20s < Tmemory < 2Hr the triggering stream resulted in similar behaviour, with the system cor-

rectly marking all potential sub-threshold events. At Tmemory ≈ 20s, system quickly recovered from

large jumps in the triggering stream, however it marked a significant number of small anomalies

(∆f > 0.01Hz, ∆v > 0.1V . . . etc) as outside 3σ, and thus candidates for sub-threshold events. At

Tmemory ≈ 2Hr, system took significant amount of time to recover from large jumps in triggering
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Figure 4.8: µ and σ behaviour with a)α = 0.5 and b)α = 0.05

metrics, thus marking the metric as outside of 3σ for many tens of minutes. Furthermore, some

of the larger anomalous measurements (∆f > 0.05Hz, ∆v > 2V . . . etc) were no longer flagged as

sub-threshold candidates. Outside of the two extremes, the system behaviour was quite similar.

During all of the deployments the OPQ system was operating with:

α = 0.05 (4.1)

Which corresponds to the Tmemory ≈ 2 minutes. Thresholds which initiate the Napali event

detection state machine are shown in Table 3.7.

The effect of the of selecting alpha as shown in Equation 4.1 can be observed in Figure 4.10.

This figure shows interesting features from the same dataset that was used to produce Figure 4.9.
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Figure 4.9: Amount of time a metric spends outside of the 3σ for various values of α

Blue traces show metrics that exhibit anomalous behaviour, while red indicates that Napali has

flagged this temporal region as a sub-threshold event candidate. Figure 4.10a shows a frequency

fluctuation which nearly passes the threshold of 60.1Hz which would mark it as a full fledged event.

Instead, Napali marked almost the entirety of the fluctuation as a potential sub-threshold event, as

shown by the red trace. Figure 4.10b shows a step in the total harmonic distortion metric, similar

to the one shown in Figure 3.7 at the 6am mark. In this case the metric in question abruptly

changed to a new mean, requiring a fairly slow α coefficient to catch up over 3 minutes. While

it may seem wasteful to mark large temporal regions following an abrupt jump as candidates for

sub-threshold event, it is important to note that:

1. Making the α parameter smaller does not benefit the false positive rate as shown in Figure

4.9.

2. In-situ there is no way to tell if an abrupt shift is a switch to a new steady state, or if the

metric will recover to a previous mean.

It is important to remember than Napali is not meant to have a low false positive rate. Instead, a

system like OPQ Mauka can use all available information, including the raw data, to determine if

an event is true gridwide event with much higher confidence. The main goal of Napali is to have

an extremely low rate of false negatives. Figure 4.10c is on a different timescale from Figures 4.10b

and 4.10a. This is done in order to include several potential sub-threshold events into a common

chart. Five temporal regions during the the 3 Hrs are marked by Napali as potential sub-threshold

events.
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Figure 4.10: Potential sub-threshold events for a) ffundamental, b)THD, and c)Vrms Red boxes
indicate that Napali picked these temporal windows as a potential sub-threshold event.

4.2.2 Deployment nomenclature

In this section I describe the nomenclature used throughout Napali evaluation. Since this

deployment is unique, naming convention of particular deployment characteristics and events is

unique to this paper.

All meters, both Utility and OPQ Box fall into three categories shown in Figure 4.11. Category

1 are collocated devices. In this situation the Utility meter is monitoring the the 480Vrms three

phase line going into the building. A transformer converts the 480Vrms to the household 120Vrms.

A deployed OPQ Box monitors the 120Vrms line. This category of devices is particularly important

because they provide a baseline for comparison between the OPQ Box performance and a com-

mercially installed system. The second category of deployed devices are the non-collocated OPQ
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Figure 4.11: Three categories of device deployments.

Boxes. These devices are deployed in buildings that lack smart meters. Thus, we lack ground truth

data for these devices. However, these devices are still useful for subthreshold triggering studies.

Finally, category 3 consists of non-collocated Utility meters. These meters monitor locations with-

out a deployed OPQ device. Similarly to locations in category 2, data from these devices proved

useful in subthreshold event detection evaluation.

There are several types of events that Napali is able to detect. The first category are gridwide

events. Gridwide events affect every device on the OPQ network, with each device passing one of

the designated threshold. Gridwide events inherently lack a subthreshold component since every

device captures over-threshold data. Partial gridwide events are events that affect only a subset of

devices enough to pass the threshold and trigger data collection. One of the main goals of Napali

is to utilize metric extraction in order to detect sub-threshold events. During the deployment, two

types of sub-threshold events were identified:

• Partial sub-threshold events.

• Full sub-threshold events.

Full sub-threshold events consist of one or several devices passing the threshold described in Table

3.7, as well as one or several devices marked as sub-threshold by Napali. Partial sub-threshold

events consist of devices which all passed the threshold described in Table 3.7, however some of

the devices triggered on a different metric with a much shorter temporal window. The important

distinction between partial sub-threshold events and full sub-threshold events is that if triggered

using the Self-Triggering method, the majority of the sub-threshold data would be lost.

One would expect that partial gridwide events would be divided into those with and without a

subthreshold component, however, none of the events captured by Napali during the deployment
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consist of only over-threshold waveforms. As such, all of the Napali partial gridwide events are also

subthreshold events, and the term is used interchangeably.
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Figure 4.12: Partial sub-threshold event a) the sub-threshold component of the event, b) above
threshold component of the event

An example of a partial sub-threshold event is shown in Figure 4.12. Figure 4.12a shows the

sub-threshold component of the event. In this event device 2 passed the threshold on Vrms metric,

initiating Napali to look for sub-threshold events across other devices. It is important to note, that

at the event start device 1 was considered to be a sub-threshold candidate, however, at t ≈ 26.8s

device 1 produced a transient metric which was above Napali threshold. As such Napali requested

raw data from both device 1 and device 2, creating a partial sub-threshold event containing both

a voltage sag shown in Figure 4.12a and a transient shown in Figure 4.12b.

An example of a full sub-threshold event is shown in Figure 4.13. This is a short-lived transient

event observed by four devices on September 5th. Devices 1, 3, and 4 generated a transient metric

higher then the Napali threshold. Device 2 transient metric did not pass threshold, yet nonetheless

produced a severe enough deviation from the mean for Napali to consider it a part of the event.

This is particularly evident in the mild transient observed in Figure 4.13b.
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Figure 4.13: Full sub-threshold event across 4 devices. a) Device 1: above threshold b) Device 2:
sub-threshold c) Device 3: above threshold d) Device 4: above threshold.

4.2.3 Event Dataset

Event dataset used in this analysis consists of data from 15 devices collected between November

14th and January 1st 2019. There are 2163 events in total, with 1378 Vrms events and 737 transient

events. 6 Events were related solely to frequency and 83 related solely to total harmonic disturbance.

During the deployment, OPQ network achieved 97% availability with only downtime relating to

software updates and a power outage November 25h power outage.
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4.3 Results of experimental evaluation

Napali was validated using simulation, synthetic data with the device-in-loop, and in-situ during

the deployment. In this section I present the results of the evaluation of the claims of my dissertation

as discussed in Section 1.6.

4.3.1 Napali Bandwidth usage

During the OPQ deployment it was found that Napali significantly outperformed both the Self-

Triggered and the Naive event detection methods. In order to evaluate the bandwidth performance

of Napali, a Self-Triggered plugin ran along-side it inside the Makai host. This plugin utilized

the same thresholds as Napali as described in Table 3.7. However, the Self-Triggered plugin did

not take into the account any inter-device signatures. This method is equivalent to each device

performing non-collaborative triggering.
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Figure 4.14: Amount of data requested from 10 OPQ Boxes via the Self-Triggered and Napali
methods.

Figure 4.14 shows the amount of data requested from 10 devices by the Self-Triggered and

Napali plugins over 24 Hours. It is evident that the majority of data requests for the Self-Triggered

method resulted in local noise, and did not contribute to the grid measurements. Napali on the

other hand, ignored anomalies which did not affect more then a single device, while requesting
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sub-threshold data during a gridwide PQ event.

0 5 10 15 20
Time(Hr)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
et

ric
 R

at
e(

KB s
)

Received Total: 97.55MB

(a)

0 5 10 15 20
Time(Hr)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Co
m

m
an

ds
 S

en
t(K

B)

Sent total: 49.01KB

(b)

Figure 4.15: Penalties incurred by the Napali framework. a) Metrics received from 10 OPQ Boxes.
b) Commands sent to 10 OPQ Box

It should be noted that the Self-Triggered method does not incur the penalty of having to

constantly transmit the device metrics to the sink, since all the event detection is performed on

the device. Figure 4.15a shows the amount of data received via metrics from 10 OPQ Boxes

during the same 24 hours as the Figure 4.14. As expected the bandwidth requirement for metric

transmission remains constant, since all OPQ Boxes send the metrics at fixed intervals. While this

penalty is significant as it constitutes 41% of the total bandwidth used by Napali, the aggregate

bandwidth is still shows a 440% improvement over the Self-Triggered method. Another penalty

incurred by Napali is the two way communication requirement. Each device which participated

the event detection needed to receive a command with the temporal range with anomalous data.

Neither the Naive nor Self-Triggered methods require two-way communication, and as such there

is no direct comparison to Napali. Figure 4.15b shows the command bandwidth consumption for

10 OPQ Boxes across 24 hours. The total consumption was 50kB, which is quite trivial for any

modern sensor network.

During the 24 hours shown in Figures 4.15 and 4.14, Napali captured 60 events, while the

Self-Triggered method captured 878. The average length of the Napali Event was 10s to the Self-

Triggered 3s. Of 60 Napali events, all 60 contained sub-threshold data.

Comparison of Napali with the Naive method was performed analytically. Since the sampling

rate of the OPQ Box is well characterized, and the number of OPQ Boxes is fixed, it is trivial to

calculate the amount of raw data generated by the OPQ network during any time period. In order

to make this comparison fair, the raw data bandwidth will be scaled by the compression ratio of the

state of the art compression algorithm specifically designed for power quality measurements.[43]
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Operating at 12kSps, OPQ Box produces raw data at 24KB/s. With state of the art compression

operating at 90% compression ratio and 5% overhead of meta-data, one can expect a 3KB/s stream

of raw data for each OPQ box if it were to send the entirety of it to the sink. For 10 OPQ Boxes

we would expect the aggregate bandwidth of 30kB/s, and as such the bandwidth consumption of

24.7GB/day. During a 24 hour period, as shown in Figures 4.15 and 4.14, Napali used 234MB of

bandwidth. This corresponds to an over 100x improvement over the Naive method.
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Figure 4.16: Bandwidth requirement comparison between three event detection methods.

Figure 4.16 shows the comparison between Napali, the Naive, and Self-Triggered methods.

While Napali incurs additional costs described in Figure 4.15, it outperforms the comparable meth-

ods. Finally, the cost of the two way communication as shown in Figure 4.15b is greatly outweighed

by the bandwidth savings in the raw data reception. Modern sensor networks greatly benefit from

two way communication, as it allows on-demand health monitoring, and software updates. With

addition of Napali, two way communication allows for significant bandwidth requirement reduction

in for the sensor network as a whole.

This result validates the claim described in Section 1.6.1. The Napali event detection method

significantly reduces the bandwidth cost associated with power quality event detection.
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4.3.2 Sink processing requirement under the Napali Framework

Sink processing requirements for event detection between Self-Triggered, Naive and Napali are

quite different. In general the processing requirement can be described as follows:

Ctotal = Cmetric extraction + Cdetection (4.2)

In the Equation 4.2 the Ctotal is the total cost, Cmetric extraction is the cost of extracting metrics

and Cdetection is the cost of event detection.[11] Each of the three methods, Napali, Self-Triggered,

and Naive, have different sink costs associated with each parameter.

Sink processing: Naive Method

First, let’s consider the Naive method. In this case, all of the metrics need to be extracted at the

sink. Disregarding the processing power required to keep up with the data rate described in Section

4.3.1, the Cfeature extraction can be measured empirically. In order perform this measurement,

OPQ Box software was built for an x86 architecture and stress-tested. Instead of acquiring data

from a device driver, the feature extraction stack was supplied with synthetic data. Finally, the

ZMQ communication was removed and replaced with the performance analysis code. Stress test

was performed on an Intel Core i9-8950HK CPU with thermal management disabled running at

2.9GHz. Under such conditions, the metric extraction stack was able to extract features from 1s

worth of raw data in 800us running on a single core. Since metric extraction has no inter-device

data dependencies, a modern 8 core CPU can expect to keep up with feature extraction from

1000 devices. If an OPQ Box sensor is used with 16 bit samples and 12kSps ADC, aggregate

bandwidth for such system is 10.8Gbps, which is well within the realm of a collocated server with

dual 10Gbps network interfaces. Cdetection cost can be made linear with the number of devices. If

a rolling window is applied to metrics as they are generated, raw data from all devices contained

in the window with an offending threshold metric can be retained for later analysis. While simple,

this method will collect all of the gridwide events along with a large number of false positives.

In synthetic benchmarks, the Cdetection made up less then 0.01% of the computational cost when

compared to Cfeature extraction and does not significantly contribute to the Ctotal.

Sink Processing: Naive Method

In contrast to the Naive method, the Self-Triggered method has no sink processing requirements,

since all of the feature-extraction is performed on the edge device. Thus, Self-Triggered method

event detection is only limited by the available network bandwidth.
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Sink Processing: Napali Method

Napali, being a hybrid of Naive and Self-Triggered methods, moves the Cmetric extraction cost to

the edge devices, while retaining the Cdetection at the sink. Unlike the Naive case, Napali performs

additional computations on the features in order to detect sub-threshold events while excluding

local noise. However, even with additional metric analysis the Napali stack was able to process

synthetic data from 100000 devices on a single core of an a Intel Core i9-8950HK CPU. This would

allow a single server running Makai to provide 50% coverage of households in the city of Honolulu.

Sink Processing: Event Classification

The final step of any power quality analysis stack is event classification. Every event collected

by an event detection system must be analyzed and classified according to their severity and type.

While Makai/Napali are not responsible for event classification, it is important to consider event

classification cost when discussing sink processing requirements. In the case of the Naive method,

events which are detected are a mix of local and global events. However, every event will contain a

waveform from every device on the network. For the Self-Triggered method, only the events which

cross the threshold will be considered for classification. While Self-Triggered events will not contain

false positives and sub-threshold events, vast majority of acquired waveforms are comprised of local

disturbances. Finally, Napali produces high quality events which only contain high fidelity sub and

over threshold events, while ignoring local disturbances. During the campus deployment Napali

detected 302 Events comprised of 1561 individual device waveforms a week on average. The Self-

Triggered method detected 26520 offending waveforms. If we assume unitary classification cost,

classification computational requirements for one week of data are shown in Figure 4.17.

This result validates the claim described in Section 1.6.3. Napali greatly reduces the sink

processing requirements when compared to the Naive method. While no direct comparison can

be made with the Self-Triggered method, the volume of data generated by it will have an adverse

effect on event analysis resource consumption compared to Napali.

4.3.3 Effects of latency in the Napali framework

In order to understand the effects of latency on Makai in the OPQ deployment, we examined

the event length and round trip latency for OPQ Boxes. These parameters are shown in Figure

4.18.

Figure 4.18a was generated from 1000 events or about a month of data. As depicted, the

majority of events captured by Napali were less then 20s in length, with a few stragglers hitting a

40sec mark.

Figure 4.18b was generated by requesting a 20s event from all OPQ Box devices and timing the

amount of time it takes them to respond. Since this measurement can be performed synthetically
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Figure 4.17: Classification cost based on the expected amount of waveforms for the three considered
methods.
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Figure 4.18: Event length(a) and message latency(b) observed by the OPQ devices.

without waiting for an anomaly, 10000 samples were used, which equates to approximately ten

months of real world measurements. Latencies clustered into two groups, likely based on the

number of retransmission required for the senor to reach the router, with means of 12.5ms and

50ms. A few stragglers were observed at at 200ms and a single device had a latency of 1.2s, and

was omitted from Figure 4.18b for clarity.

Since OPQ Boxes communicate via WiFi it is common for them to lose connections to the

access point, and reconnect some time later. This behaviour can be quantified in the OPQ network

by examining the trend dataset. Trends are generated for each device at 1 minute intervals. By
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comparing the database insertion time and the timestamp reported by the device, it is possible to

find trends which were delayed in transit. Out of two months of data only 73 delayed trends were

reported, and are shown in Figure 4.19. While the majority of trends were delayed by less then 60

seconds, one was delayed by 3 minutes.

OPQ Box does not utilize compression in the RDRB. The maximum safe size of RDRB was

found to be 100MB of 256MB of total system memory. This way there is enough memory left

over on the device to prepare the data for transmission in the extreme case where Makai requests

the entire buffer. Given that the sampling rate and data size is fixed, 100MB of RDRB can store

about 1.1 hours of raw waveform. As evident from Figure 4.18, under normal operating conditions,

even with degraded latency, no event will overrun the RDRB. Even with the longest observed

event/worst observed latency, the maximum delay is on the order of 50s, or slightly longer then 1%

of the maximum tolerated latency. Under abnormal conditions, such as a WIFI drop, the maximum

delay may be on the order of 5 minnutes, which is on the order of 8% of maximum tolerated latency.
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Figure 4.19: Delay in trend creation, indicating a network failure.

Device latency has a different effect on Napali, Naive and Self-Triggered methods. The Self-

Triggered method is completely unaffected by latency, since event detection is performed entirely

on the device. The Naive method is affected the most, since the sink performs all of the event

detection computations. In this case, if latency is asymmetric across the devices, and the device

with the highest latency observes an over-threshold condition, there is potential for waveforms from

the rest of the network to get falsely discarded. Napali only requires metrics for anomaly detection,

and as such, the sink does not need to buffer raw data in anticipation of a potential event.

The Naive method must buffer enough raw data to be able to handle network failures and

interruptions. If a device with an over the threshold metric is delayed, the Naive method must

keep raw waveforms for all devices in order to store them for later analysis. In the case of OPQ,

as described in Figures 4.19 and 4.18, the maximum observed latency may be on the order of 5

minutes. This implies, for each device Naive method must buffer 7MB of raw waveform per device.

In reality, for large deployment both the rate of network failure, and latency is expected to be higher
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then those reported on the UH network.

In the case of Napali, only the metrics need to be buffered for event detection. An optimal

amount of metrics storage is determined by the worst case latency and the maximum expected

event size However, since the overhead of buffering metrics is so small there is no reason to not

maintain a measurement buffer appropriate to accumulate the maximum delay that the OPQ Box

can tolerate. This limit is governed by the amount of data that the RDRB can store, thus even

if an over the threshold metrics are transmitted the delay slightly less then the RDRB capacity,

Napali will still acquire the raw waveform. The amount of memory required for each device can be

derived by analysing the metric size and the frequency of metric transmission. In the case of OPQ,

each measurement is 24bytes in size and they are transmitted at the rate of 1 measurement per

second resulting in the total memory consumption of 84kB for 1 hour of metric storage. A modest

server can support Napali/Makai with 100000 devices while utilising 8GB of memory for 1 hour of

metric storage, a 100 times improvement over the Naive method only buffering 5 minutes of raw

waveforms.

This result validates the claim described in 1.6.2. Napali is able to mitigate device latencies of

up to the device buffer size with no adverse effects, while the Naive method struggled to cope with

short disturbances. No direct comparison to the Self-Triggered method is made, since latency is

not a factor of Self-Triggered event detection.

4.3.4 Summary of Computational and Network Resource Utilisation

Sections 4.3.1, 4.3.2 and 4.3.3 describe the computational utility of the Napali framework,

when compared to the Naive and Self-Triggered methods. Using the insights described above we

can compare the number of devices that the three methods in question can support on a modest

collocated server. Our hypothetical server is a 4 core machine, with each core equivalent to an Intel

i9-8950HK we have been using for benchmarking. It is further equipped with 8GB of random access

memory and a single symmetric 1Gb uplink to OPQ devices. For comparison we consider the three

metrics described above: bandwidth, computational cost and memory utilization. When comparing

network computational cost, the classification cost is not considered, since these results illustrate the

cost of the event detection only. Notice, that we use linear scaling for Napali event rate. Napali uses

a statistical approach, in order to locate subthreshold events. Intuitively, this statistical approach

would not scale linearly, since as the number of devices in the network increases, the probability

of multiple devices observing unrelated subthreshold event increases as well. However this can be

mitigated using device clustering as shown in Section 4.4.1, which results in linear scalability.

Table 4.1: Method comparison for a typical collocated server: Bandwidth

Napali Self-Triggered Naive

# of devices 44000 10000 800
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Table 4.1 describes the bandwidth limitation across the three methods, assuming no overhead

and 100% utilization on the 1Gb link. Napali is a clear winner in this case, since it is able to to

support significantly more devices before becoming bandwidth limited.

Table 4.2: Method comparison for a typical collocated server: CPU

Napali Self-Triggered Naive

# of devices 400000 ∞ 1000

Table 4.2 describes the CPU limitation across three methods, assuming 100% CPU utilization

on all 4 cores. In the Self-Triggered method, event detection is performed entirely on the device,

so it incurs no CPU cost. However, the cost of event detection with Napali is so low, that it hardly

affects it’s utility. Naive method fairs the worst between the three since it relegates all of the event

detection cost to the sink.

Table 4.3: Method comparison for a typical collocated server: Memory

Napali Self-Triggered Naive

# of devices 100000 ∞ 1000

Table 4.3 describes the memory limitations across the three methods, assuming 100% memory

utilization. Again, with no sink requirements, the Self-Triggered method requires no memory buffer

for event detection. Napali buffers 1Hr of metrics in order to accommodate on devices with excessive

latency and handle network faults. Naive method must maintain a buffer of raw waveforms on the

sink, which leads to a memory bottleneck while only maintaining a 5 minute buffer.

Table 4.4: Method comparison for a typical collocated server: Worst of all metrics

Napali Self-Triggered Naive

# of devices 44000 10000 800

Table 4.4 describes the final tally across the three methods. It illustrates how many devices our

hypothetical collocated server can handle before becoming limited in one of three metrics. All three
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methods are limited by the bandwidth, however, even with additional bandwidth the Naive method

would quickly run out of computational resources to keep up with the data stream. As such, when

it comes to efficiency of gridwide monitoring Napali is a clear winner suitable for deployment across

a large portion of grid endpoints. Self-Triggered method is close second, but as we will see in the

next two sections, it performes poorly when it comes to detection efficiency. Finally, Naive method

is the most computationally expensive at the sink. However, it is also the most robust when it

comes to event detection, both local, gridwide, and subthreshold. As such, the Naive method is

best left for monitoring high value infrastructure such as substations and production centers which

can afford the additional computational and bandwidth cost.

4.3.5 Temporal locality triggering of the Napali framework

As mentioned previously, during the University of Hawaii deployment the OPQ network worked

alongside the utility grade meters embedded in the University power delivery infrastructure. Data

from these devices provided ground truth when it came to evaluating OPQ power quality anomaly

detection. Before we delve deeper into that, I will compare the OPQ Box and utility meter metric

extraction capabilities.

Utility meter metric extraction comparison

Eight OPQ devices were collocated along with smart utility meters capable of logging power

quality metrics. This analysis focuses on Device 1000 along with a smart utility meter labeled

POST MAIN 2 which is located upstream of Device 1000. POST MAIN 2 is monitoring a 480V

line going into the Pacific Ocean and Science Building prior to its conditioning and step down into

the domestic 120V.

Frequency: A plot of 1 week of frequency measurements collected by the OPQ Box 1000 and

POST MAIN 2 is shown in Figure 4.20.

OPQ Box and the utility meter track the fundamental frequency across all devices throughout

the entire deployment. This is expected since the fundamental frequency must be stable across

the entire grid in order for it to operate properly. This parity is further demonstrated in Figure

4.21 where the frequency recorded by the two devices was subtracted from one another. These

differences were histogramed and statistically analyzed.

Synthetic benchmarks showed the OPQBox frequency measurement capability on the order

of 200x better then the error reported in Figure 4.21. This is likely due to the fact that both

comparisons are done over 1 minute averages of frequency, and the offset of where the minute

average starts is not well described in the utility data. Regardless, with the power quality threshold

of 0.1Hz an error of two devices with σ = 8mHz is perfectly acceptable to draw our conclusions

regarding the Napali temporal trigger efficiency.
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Figure 4.20: Frequency metric for the POST MAIN 2 utility meter and OPQ Box 1000.
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Figure 4.21: Difference in the frequency metric between POST MAIN 2 utility meter and OPQ
Box 1000.

THD: A plot of 1 week of THD measurements collected by the OPQ Box 1000 and POST MAIN 2

is shown in Figure 4.22.

Unlike the frequency measurements, THD shows anomalous behaviour during the daylight

hours. Particularly, from 6:00-18:00 daily the THD measurement diverges by a fraction of a percent

between the devices. Since the POST MAIN 2 meter is located upstream of Device 1000 on the

power grid hierarchy, there is likely a reactive power compensation or a THD filter system posi-
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Figure 4.22: THD metric for the POST MAIN 2 utility meter and OPQ Box 1000.

tioned between the two devices. The fact the the minute differences in THD are tracked equally

well, albeit with an aforementioned offset is particularly interesting. This fact is further illustrated

in Figure 4.23.
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Figure 4.23: Difference in the THD metric between POST MAIN 2 utility meter and OPQ Box
1000.

Figure 4.23 shows the histograms of the difference in measurement between the OPQ device

and the utility meter. In blue are the samples occurring during the seemingly coincidental regions

of 18:00-6:00. These regions are characterized by an excellent agreement between the two devices,

with difference given by sigma = 0.02%. This level of agreement is comparable to the synthetic

benchmarks of the OPQ box with a well calibrated source. The red region is the anomalous region,

where the two sets of measurements are offset by the µ = 0.13%. Even though the accuracy suffered,

measurement remained precise down to σ = 0.04%.
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RMS Voltage: A plot of 1 week of normalized voltage measurements collected by the OPQ Box

1000 and POST MAIN 2 meter is shown in Figure 4.24.
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Figure 4.24: RMS metric for the POST MAIN 2 utility meter and OPQ Box 1000.

It should be noted that the Vrms for POST MAIN 2 shown in Figure 4.24 is not the raw

waveform acquired from the meter. The raw data consists of the inter-phase across between each

leg of the 3 phase system. Typically, in order to step down a 3 phase 480V system into a 120V

single phase a star or a delta transformer is employed. The voltage generated from this transform

configuration is a quadrature combination of the three phases [16], thus the voltage displayed in

Figure 4.24 was in fact:

Vrms =
1√
3C

√
V 2
ab + V 2

bc + V 2
ca (4.3)

where the Vab, Vbc and Vca are the inter-phase voltages reported by the meter, and C is a constant

dependent on the transformer configuration and the final step down voltage. In order to make

the differences stand out across the two scales Figure 4.24 was generated with both data sets

normalized. A typical step down turn ratio of 480V to 120V is naturally 4:1, which matches quite

well with the measured step down factor extracted from the OPQ data and result of Equation 4.3

of 3.9985:1.

Just as with Frequency and THD metrics, we compared the difference between the reported

voltage by the two devices. Equation 4.3 was used along with the empirically measured C = 3.9985

in order to preprocess the POST MAIN 2 dataset. The resulting histogram is shown in Figure 4.25

There were a few outliers, resulting in a poor fit. These outliers were likely due to the timing

misalignment in the device data. While overall timing agrees quite well, the meters report their
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Figure 4.25: Difference in the Vrms metric between POST MAIN 2 utility meter and OPQ Box
1000.

metric at one minute averages, similar to the OPQ Box. However, when the minute begins and

ends is quite arbitrary for the OPQ Box, thus resulting in some overlap. Regardless, even with

the timing discrepancy the voltage metrics agree to an excellent degree across both devices with a

σ = 0.1V . With the event threshold of ±5V this level of agreement was found to be acceptable.

Overall metric comparison: Metrics between the utility meter and the OPQ device were found

to correlate to a great degree of accuracy. Frequency measurements in particular was well formed,

with a well characterized gaussian with minimal offset and a σ = 8mHz. Total harmonic distortion

tracked very well across the devices, with the difference σ < 0.04% in all cases. However, additional

offset was regularly introduced by some form of harmonic filtering equipment. Vrms voltage agree-

ment across the two devices suffered the most as expected. There is no way to analytically calculate

the step down factor between the 480V three phase system and 120V system without taking apart

and measuring the power transformer which powers the POST building. However the empirically

measured turn ratio matched closely to the expected value. Furthermore, two meters were in close

agreement at all times with σ = 0.1V between the two devices. This discrepancy was expected,

since both devices are influenced by a different noise sources, with the POST MAIN 2 meter noise

being a superset of that observed by the OPQ Box 1000. The performance of the metric extraction,

compared to the utility meter, was found to be satisfactory across the board, making the OPQ Box

well suited for grid edge power quality monitoring.
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Gridwide event extraction from utility meters

Table 4.5: OPQ Box and utility meter collocation.

OPQ Box ID Utility Meter

1000, 1002 POST MAIN 1
POST MAIN 2

1001 HAMILTON LIB PH III CH 1 MTR
HAMILTON LIB PH III CH 2 MTR
HAMILTON LIB PH III CH 3 MTR
HAMILTON LIB PH III MAIN 1 MTR
HAMILTON LIB PH III MAIN 2 MTR
HAMILTON LIB PH III MCC AC1 MTR
HAMILTON LIB PH III MCC AC2 MTR

1003 KELLER HALL MAIN MTR

1021 MARINE SCIENCE MAIN A MTR
MARINE SCIENCE MAIN B MTR
MARINE SCIENCE MCC MTR

1022 AG ENGINEERING MAIN MTR
AG ENGINEERING MCC MTR

1023 LAW LIB MAIN MTR

1025 KENNEDY THEATRE MAIN MTR

In addition to POST MAIN 2, several other meters were collocated in the same building as an

OPQ Box. Details of this collocation are shown in Table 4.5. Data from these utility meters

was used as a basis for evaluation of the temporal locality claim of the Napali framework. Napali

temporal locality states that by monitoring the edge nodes of the power grid for temporally related

disturbances, the state of the power grid can be determined. In the next section I show this claim

to be true, however, prior to that I demonstrate how gridwide events were extracted from the utility

meter records.

As shown in Table 4.5 the POST building has two OPQ Devices and two utility meters. Fur-

thermore, several OPQ devices are located in buildings with more then one meter. Unfortunately,

no detailed building schematics were made available to us, thus it is not clear which meter was a

parent node of the OPQ Box in the power grid hierarchy.

In order to extract anomalies which affected the collocated meters, utility meters from Table

4.5 were queried for metrics from November 15th 2019 to December 19th 2019. These metrics

contained minute windowed average, minimum and maximum values for the following power quality

measurements:

1. Vrms(AB), Vrms(BC), Vrms(CA) : RMS value for the inter-phase voltage.
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Figure 4.26: Total number of gridwide and subthreshold events extracted from the utility power
meters from November 15th to December 19th.

2. ffundamental : Fundamental frequency.

3. THD : Total harmonic distortion.

It is unclear which leg of the three phase system the ffundamental measurement was performed

on. The THD measurement was likely performed on all three legs and combined together, since

it matches closely to the box measurement as shown in Figure 4.22 and 4.23. Finally, in a few

meters lacked the Vrms(AB), Vrms(BC) and Vrms(AB) and instead delivered Vrms(AN), Vrms(BN),

Vrms(CN) measurements. These measurements are line-to-neutral instead of line to line. In these

caseses, instead of using equation 4.3, Equation 4.4 to calculate observed 120V line voltage. [16]

Vrms =

√
3

4

√
V 2
ab + V 2

bc + V 2
ca

(4.4)

Extraction for ffundamental and THD metrics were processed in a similar manner to the OPQ

Box events. If the minimum or maximum metric exceeded the threshold defined in Table 3.7 were

surpassed, the temporal region was marked as anomalous. If anomalous regions across multiple

utility meters were marked, that temporal region was reported as a utility gridwide event. Vrms

measurements were processed in a slightly different manner. First, the Vrms value as observed by

the OPQ devices was calculated from both minimum and maximum of the utility metrics using

Equation 4.4 or 4.3. These values were then treated in the same manner as ffundamental and THD.

Next the individual phases Vrms(AB), Vrms(BC), Vrms(CA) or Vrms(AN), Vrms(BN), Vrms(CN)

were thresholded using the same 81
3% threshold used for the OPQ devices. If more then one utility

meter observed a single phase sag or swell it was marked as a utility gridwide event.
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Figure 4.27: Example of the four types of events extracted from utility meter data.
a)Fundamental frequency event recorded by POST MAIN 2. b) THD event recorded
by HAMILTON LIB PH III MAIN 1. c) Multiphase Vrms event as recorded by HAMIL-
TON LIB PH III CH 2. d) Single phase Vrms event as recorded by HAMILTON LIB PH III CH 3.

Total number of events of each type extracted from the utility meters is shown in Figure 4.26.

Examples of recorded gridwide events as observed by various meters is shown in Figure 4.27.

Evaluation of detection capabilities for the Napali framework

With the gridwide events extracted from the utility meters in the previous section, a detailed

evaluation of Napali detection capabilities was carried out. Events timestamps which corresponded

to the utility meter grid wide events were queried against OPQ event database and analyzed.

Primarily, if an event was located it was reanalyzed to validate that the metric which triggered the

utility meter was the same as the one which triggered the OPQ system.
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Frequency Gridwide Events: Out of 35 gridwide frequency events 34 were detected by Na-

pali. As expected, since frequency is quite consistent across the entire power grid, all OPQ devices

triggered on the 34 recorded events. The missed frequency event occurred on November 25th at

7:08:00 AM which corresponds to a complete 3 minute power outage as shown in Figure 4.28. Un-

fortunately, by the time the OPQ devices finished their initialization procedure, the grid conditions

have returned to normal. It should be noted that the outage was recorded and reported by the

OPQ system.
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Figure 4.28: November 25th outage as observed by the utility meter POST MAIN 2. a) Observed
frequency. b)Observed voltage.

THD gridwide event: A single THD event extracted from the utility meters was recorded and

by the OPQ system with every device sending raw waveforms for the event.

Vrms multiphase: Out of 12 gridwide utility events only 7 were detected by the OPQ system.

However, a closer examination of missed events revealed a pattern. The table of the missed events

and their triggered meters is shown in Table 4.6

It seems that between 2pm November 26th and 3:30pm November 27th electrical equipment in

Hamilton library was experiencing power quality issues, while the rest of the University power grid

exhibited nominal behaviour. Since only a single OPQ Device is located in the Hamilton library,

Napali rightfully rejected any power quality metrics observed there as local disturbances. Finally,

November 25, 7:08 signifies the power interruption as discussed previously. As such the true utility

gridwide event number is 8 with 7 detected using the Napali framework.
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Table 4.6: Missed Vrms multiphase utility events.

Event Timestamp Triggered utility meter

November 26 14:53 HAMILTON LIB PH III CH 1 MTR
HAMILTON LIB PH III CH 3 MTR
HAMILTON LIB PH III MCC AC1 MTR
HAMILTON LIB PH III MCC AC2 MTR

November 27 11:15 HAMILTON LIB PH III CH 1 MTR
HAMILTON LIB PH III MAIN 1 MTR
HAMILTON LIB PH III CH 3 MTR
HAMILTON LIB PH III MCC AC1 MTR
HAMILTON LIB PH III MCC AC2 MTR

November 27 11:21 HAMILTON LIB PH III CH 1 MTR
HAMILTON LIB PH III MAIN 1 MTR
HAMILTON LIB PH III CH 3 MTR
HAMILTON LIB PH III MCC AC1 MTR
HAMILTON LIB PH III MCC AC2 MTR

November 27 15:18 HAMILTON LIB PH III CH 1 MTR
HAMILTON LIB PH III MAIN 1 MTR
HAMILTON LIB PH III CH 3 MTR
HAMILTON LIB PH III MCC AC1 MTR
HAMILTON LIB PH III MCC AC2 MTR

November 25, 7:08 All utility meters.

Vrms single phase: Out of 32 single phase gridwide events, 23 were detected by the Napali

framework. Similarly to the Vrms multiphase events:

• 1 event was due to the Nov 25 outage.

• 6 events were incorrectly classified as gridwide, since they originated from the same building.

Two events occurring on November 26th 14:53 and November 27th 11:15 were missed by the OPQ

system. These events triggered on all of the Hamilton library meters and the KELLER HALL MAIN MTR

located in Keller hall. While one of the phases did go bellow the ≈ 8% threshold, it did not cause

a large enough disturbance to appear as an anomaly to the keller hall device. Furthermore, while

these events impacted multiple meters, they during the anomalous period experienced by the Hamil-

ton library subgrid. It is unlikely that these events were true gridwide events, but instead the bleed

over from the Hamilton library.

Detection capabilities for the Napali framework

The events missed due to the power outage could have been remedied by inclusion of a battery

in the OPQ Box. However, even without the battery, OPQ system was able to correctly identify the

power outage. Disregarding the multi-utility meter events which originated from the same building,
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Figure 4.29: Comparison of the gridwide events detected by Napali and the utility meters.

detection performance of the Napali framework is outlined in Figure 4.29. This result validates the

temporal locality hypothesis as presented in Section 4.3.5. Disregarding the event caused by the

power outage, Napali showed an over 97% detection rate for grid wide events. The two events that

were missed by the Napali framework, only affected a single phase of a neighbouring building, and

did not cause significant drop in the observed line voltage.

4.3.6 Sub-threshold Data Acquisition

While the Naive method compares favorably to Napali when it comes to resource consumption

as outlined in Section 4.3.4, it lacks the ability to detect portions of gridwide events which are

below the device detection threshold. Unlike the Naive method, Napli cooperative edge-centric

event detection attempts to capture both over-threshold and sub-threshold data as described in

Section 3.2.5. Section 4.3.5 described the detection capabilities of the OPQ Network and Napali,

when detecting partial gridwide events with consensus of 2 or more utility meters. These are the

types of events that the Naive and Napali are equally capable of detecting. Indeed, the Naive plugin

in Makai received data from devices which were collocated with utility meters which observed the

disturbance. In contrast Napali captured additional waveforms which corresponded to the sub-
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threshold portions of each event. More interesting however, were the gridwide events which were

extracted from all of the utility meters, not just the ones collocated with an OPQ box. Particularly,

gridwide events which corresponded to an over-threshold anomaly observed by a collocated utility

meter as well as one or more of the non-collocated meters were of particular interest. These events

are invariably gridwide, since more then one UH Utility meter was affected, however only a subset

of OPQ devices would experience the disturbance with an over-threshold severity. This is a subtle

difference from events used in the previous section. In order to perform this evaluation, a dataset

of ground truth validated partial gridwide events was required, and the only way to obtain it was

by filtering Utility meter data to temporal windows consisting of:

• One over-threshold collocated utility meter: This made sure that one of the metrics

from a collocate OPQBox passed a threshold.

• One or more over-threshold non-collocated utility meters: This allowed us to con-

clude that the event was partial gridwide event.

These events create a basis for sub-threshold data acquisition false negative analysis. After all, it

is clearly established that these events are gridwide, and affect only a portion of the UH power

delivery infrastructure. If Napali is capable of locating and acquiring subthreshold portions of

these events, it would prove the claim that the subthreshold event acquisition is both a possible

and useful tool for power quality analysis.

Unfortunately, events which impact only a part of the UH power grid with the affected area

limited to a region with both collocated and non-collocated meters are quite rare. From the data

made available to us from the UH Smart meters only 3 such events were identified. These events

are shown in Table 4.7.

It is unclear why these events all seem to have similar parent Utility meters. Nonetheless, two of

the events have data from every device on the OPQ network. The other two events only impacted

9 and 10 out of 15 deployed devices respectively. Another peculiarity is that POST MAIN 2 and

POST MAIN 1 utility meters service the same building, however, POST MAIN 1 was not affected

enough to qualify for these events. In the next sections these events are examined in more detail.

Event 1(Nov 24 7:57 ):

The Vrms for Utility meters registering this event is shown in Figure 4.30. This event was

characterized as a large voltage swell, affecting a large portion of the campus. The voltage anomaly

was significant enough to trigger OPQ Box devices 1006, 1007 and 1002 using the Self-Triggering

method making it a partial gridwide event. In contrast the Napali acquired data from all of the UH
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Table 4.7: Gridwide events with collocated and non-collocated meters which impacted only a
portion of the power grid

Time Collocated Non-collocated OPQBox

Nov 24 7:57 POST MAIN 2 BUS AD SHIDLER MAIN MTR
ST JOHN PLANT SCIENCE MAIN MTR
MOORE HALL MAIN MTR
HPER KLUM GYM MTR
MULTIPURPOSE BLDG MAIN MTR

All

Nov 29 6:10 POST MAIN 2 MULTIPURPOSE BLDG MAIN MTR 1000
1002
1005
1006
1007
1010
1021
1022
1023
1024

Dec 14 13:14 POST MAIN 2 BUS AD SHIDLER MAIN MTR
ST JOHN PLANT SCIENCE MAIN MTR
MOORE HALL MAIN MTR

1000
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1007
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1022
1023
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Figure 4.30: Utility meter data for Event 1
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Figure 4.31: Napali Event Data for event 1.

Figure 4.32: Geospatial representation of event 1. Self-Triggered detected events are shown in red.

devices. Figure 4.31 is a 1 cycle Vrms calculated from the raw data acquired from the OPQ Devices

by Napali. The threshold displayed as a dashed line clearly outlines the 3 anomalous devices using

the Self-Triggered method, however a similar trend is observed in all other devices.

Another representation of Event 1 is shown in Figure 4.32. Here the severity of the event is
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categorized not by the value over threshold, but instead by the swing between the maximum and

minimum of the Vrms waveform. Larger changes in the Vrms magnitude are used as a metric of the

severity of the event at a particular location. The size of the circle in Figure 4.32 represents a larger

impact. Whether the device passed the trigger threshold or not is represented in the color of the

circle. Devices which were triggered via the Self-Triggered method in addition to Napali are shown

in red. Clearly this event looks quite different when acquired via the two methodologies. From the

point of view of the Self-Triggered method, the event only had a limited impact on the power grid

with only a small portion of campus affected. On the other hand, Napali provides a much clearer

picture of the event propagation and impact. In fact the magnitude of the disturbance is just as

large in some of the over-threshold and sub-threshold waveforms.

Event 2(Nov 29 6:10):
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Figure 4.33: Utility meter data for Event 2.
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Figure 4.34: Napali Event Data for event 2.
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Figure 4.35: Transients recorded as part of event 2.

This event was observed by only two Utility Smart meters. The Vrms for Utility meters is shown

in Figure 4.33. Similarly to event 1, event 2 was categorized by the Utility meters as a voltage

swell. In continued similarity, same devices: 1006, 1007 and 1002 passed the Vrms threshold, and

thus were triggered by the Self-Triggering event detection method. Napali however, triggered 7

additional devices. The cycle level Vrms for the devices detected by Napali is shown in Figure 4.34

While the utility meter data makes Event 1 and Event 2 look quite similar, OPQ data shows them

to have an opposing chronological order. Instead of a slow Vrms rise and a fast return to nominal

as observed in event 1, event 2 is characterized by a fast Vrms rise and a slow decay.

Further analysis indicates that the fast Vrms rise at t = 130ms is further characterised by a

transient observed by 4 OPQ Box devices. These transients are shown in Figure 4.36 The transients

were small enough to be missed by the Self-Triggered event detection method, yet were captured

by Napali. The geospatial representation of event 2 is shown in Figure 4.36. As with event 1,

the magnitude of the event is taken as the swing between the minimum and maximum of the

Vrms waveform. Event magnitude is represented as the size of the symbol on Figure 4.36. Red

represents devices triggered by both Napali and the Self-Triggered method. Blue are events which

were triggered only by Napali. Finally, green color symbols represent events which were triggered
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Figure 4.36: Geospatial representation of event 2. Self-Triggered detected events are shown in red.
Waveforms containing transients are shown in green.

by Napali with contained transients.

Event 2 as observed by the Self-Triggered method contains only a small portion of the event.

Waveforms from the same buildings as those affected by event 1 are captured, with no information

available regarding the rest of the grid. The transients are completely missed, and so is the rest of

the impacted locations.

This event looks significantly different when observed via Napali. The University power gid

is divided into three distinct portions. West portion of campus experienced a Vrms swell which

surpassed the OPQ imposed threshold. South portion experienced a Vrms swell of a similar mag-

nitude, without passing the threshold. Finally, the North-East portion of the campus experienced

a similar disturbance as the southern section with an addition of a transient.

Event 3(Dec 14 13:14):

Event 3 is very similar to event 1. It was characterized by a slow Vrms swell followed by a sharp

return to nominal. Utility meter data for the triggered Utility meters is shown in Figure 4.37. No

additional transient was observed as with event 1. Devices 1006, 1007 and 1002 were triggered via

the Self-Triggered method, while Napali acquired data from every device on the network. Cycle
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level Vrms of the recorded data is shown in Figure 4.38. Finally, the geographical representation of

this event is shown in Figure 4.39.
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Figure 4.37: Utility meter data for Event 3.
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Figure 4.38: Napali Event Data for event 3.

False Negative Sub-Threshold Data Acquisition.

As mentioned previously, the goal of Napali is not a low false positive detection rate. Napali only

serves as a gateway for data acquisition in a complex system designed for power quality analysis.

Any false positive events acquired by Napali will be cross examined by algorithms far better suited

for waveform analysis. Instead, the goal of Napali is to provide an extremely low false negative

event detection rate, providing the downstream detection stack all of the available data from all

potentially affected device. As shown in the evaluation with the ground truth data Napali has

performed significantly better then the Self-Triggered method in event acquisition. False negative

sub-threshold data acquisition rate on Napali is approximately 0% based on the following facts:

1. Multiple triggered collocated meters: As shown in Section 4.3.5 Napali was able to
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Figure 4.39: Geospatial representation of event 3. Self-Triggered detected events are shown in red.
Waveforms containing transients are shown in green.

identify events which were marked as gridwide by the utility meters at the rate of 100%

accuracy.

2. Single triggered collocated meters: Napali was able to capture both threshold and

subthreshold data for events which were identified as gridwide by a subset of collocated and

non-collocated Utility meters at a rate of 100% accuracy.

These results validate the claim described in Section 1.6.5. Sub-threshold triggering data com-

pares favorably to the ground truth data acquired from the UH power meters. Furthermore, the

next Section describes an additional benefit of the subthreshold triggering: power grid partitioning.

4.4 University Power Grid Partitioning via Power Quality Data

The previous section provides evidence in support of the claims for this dissertation, but the

UH Microgrid study yielded an entirely new application of subthreshold triggering: power grid

substructure detection. This section discusses this ”emergent result” of the research project. In

addition to the 3 events described in the previous section, Napali detected another 25 events

triggered on devices 1006, 1007 and 1002, all with a large sub-threshold data pool. All 28 of
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these events share the same structure with a voltage swell, sometimes accompanied with additional

transients in the rest of the power grid. Besides devices 1006, 1007 and 1002, further clusters of

of events were identified. There were 28 events with devices 1024 and 1000 observing a temporally

correlated voltage sag. One of such events in temporal and spacial representation is shown in Figure

4.40.
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Figure 4.40: A voltage sag observed on Dec 4, 6:07. Right: Temporal representation Left: Spacial
representation.

There were 15 events with devices 1003 and 1001 observing a common voltage sag beyond the

threshold. A typical event involving these devices is shown in Figure 4.41.
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Figure 4.41: A voltage sag observed on Nov 21, 6:24. Right: Temporal representation Left: Spacial
representation.
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.

While the origin of these events is unclear, Napali data allows for creation of a propagation

model for events originating from the triggered subset of the clustered devices to the rest of the

network. For this model the max(Vrms) − min(Vrms) is used as the anomaly metric. We can

compute a correlation metric for any devices d and p over n events as shown in Equation 4.5

Wn
p→d =

(max(Vrms)−min(Vrms))p
((max(Vrms)−min(Vrms))d

Wp→d =
1

n

∑
n

(Wn
p→d)

(4.5)

The result of Equation 4.5 for the cluster of events triggered by devices 1000 and 1024 is shown

in Figure 4.42.
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Figure 4.42: Blue bars represent the similarity coefficient Wp→1024

. Black bars represent the σ for the ensemble of Wn
p→d.

The error bars in Figure 4.42 represent the σ of the average between device 1024 and device in

question across the 28 events in the cluster dataset. It is clear that the disturbances observed by

OPQ Boxes 1010, 1005, 1021, 1022, 1023, 1002, 1007 and 1006 show are strongly interconnected

with those observed by devices 1024 and 1000. On the other hand devices, 1008, 1009, 1025, 1001

and 1003 experienced a much more diminished disturbance.
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A similar examination was performed on a cluster of events triggered by a Vrms disturbance

observed by devices 1002, 1006 and 1007. This time device 1006 was selected as the device p.(Device

p is selected arbitrarily) Result of Equation 4.5 with error bars representing σ of the fractions

between device 1006 and device in question is shown in Figure 4.43.
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Figure 4.43: Wp→d metric computed for device p=1006

Figure 4.43 and 4.42 both show the same trend. Devices 1010, 1005, 1021, 1022, 1023, 1002,

1007, 1006, 1024 and 1000 observe similar magnitude Vrms swell while devices 1008, 1009, 1025,

1001 and 1003 are minimally affected.

Finally, we examined cluster of events triggered by devices 1003 and 1001 using Equation 4.5

with OPQ Box 1003 serving as device p. As previously, the error bars represent standard deviation

of the fractions between device 1006 and device in question. The result of this analysis is shown

in Figure 4.44. These Wp→d results shown here are the opposite of the results for the other two

clusters. Devices 1008, 1009, 1025, 1001 and 1003 experience similar magnitude of the disturbance

while devices 1010, 1005, 1021, 1022, 1023, 1002, 1007, 1006, 1024 and 1000 are far less impacted.

From these observations, we can conclude that at the top level, Universiy of Hawaii power grid

is divided into two subgrids The East subgrid is monitored by OPQ Boxes 1010, 1005, 1021, 1022,

1023, 1002, 1007, 1006, 1024 and 1000. The West subgrid is monitored by OPQ Boxes 1008, 1009,

1025, 1001 and 1003. Each of the subgrids is likely further divided into sections. We can get a

glimpse of this substructure in events such as the one shown in Figure 4.45.

88



10
00

10
05

10
10

10
23

10
24

10
07

10
02

10
06

10
22

10
21

10
09

10
25

10
01

10
08

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
1
0
0
3

d

Figure 4.44: Wp→d metric computed for device p=1003
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Figure 4.45: A voltage sag observed on Dec 16 14:43. Right: Temporal representation. Left:
Difference between the minimum and maximum Vrms.

Figure 4.45 shows an event that was captured by Napali on Dec 16. Recording of this event

was initiated by devices 1008 and 1009 Vrms measurement passing the voltage sag threshold, with

additional sub-threshold data captured from the rest of the network. Figure 4.45 shows the further

division of the West subgrid in what is potentially subgrids containing devices 1008 and 1009 as
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well as devices 1003, 1025 and 1001.

4.4.1 Clustering Napali events

In order to examine the UH power grid structure more closely, a further analysis was per-

formed on all of the Napali collected data via hierarchical clustering. Out of 2163 events collected,

1378 events contained a voltage sag or swell in 2 or more devices at a magnitude max(Vrms) −
min(Vrms) > 1V , as such these events formed the dataset for this analysis. Since the number of

nodes we wish to cluster is quite small, agglomerative hierarchical clustering was used. Next, a

pairwise dissimilarity metric had to be selected. Equation 4.5 could not be used as a pairwise dis-

similarity, since Wp→d is at best a similarity coefficient. Instead we define a pairwise dissimilarity

between two devices as the average of the L1 distance between the max(Vrms) −max(V min
rms ) for

devices p and d as shown in Equation 4.6.

Drms
p→d =

1

n

∑
n

|(max(Vrms)−min(Vrms))p − ((max(Vrms)−min(Vrms))d| (4.6)

The pairwise dissimilarity matrix calculated from the 1378 events in the dataset is shown in Figure

4.46a. Using this pairwise dissimilarity matrix the hierarchy problem was reduced to unidimensional

hierarchical clustering. Clustering was performed using sklearn Python library, and the result

is visualized in Figure 4.46b. Figure 4.46b shows a dendrogram representation of the extracted

hierarchy. The height of each level represents the confidence level extracted by the clustering

algorithm.
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Figure 4.46: Left: Drms
p→d calculated for the Napali dataset containing Vrms anomalies. Right:

Hierarchical clustering dendrogram.

This result further validates our binomial top level hierarchy hypothesis. Top level clusters
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extracted from 1378 events were divided in agreement with our previous findings. Furthermore,

partitioning of the two clusters further matched our observation of events such as the one portrayed

in Figure 4.45.

Next, the same partitioning strategy was applied to the transient data. Transient events, were

filtered from all of the Napali collected waveforms by selecting events with more then one device

observing a transient > 5V in magnitude. This reduced the working dataset to 737 events. Each

waveform was filtered via a 400Hz highpass filter, a region with the transient was identified and

the maximum and minimum of the transient was extracted. The pairwise dissimilarity metric was

selected as the absolute value of the difference in the transient magnitude as shown in Equation

4.7.

Dtrans
p→d =

1

n

∑
n

|(max(V )−min(V ))p − ((max(V )−min(V ))d| (4.7)

The pairwise dissimilarity matrix is shown in Figure 4.47a. Unlike the pairwise dissimilarity

matrix in Figure 4.46a device 1003 hierarchy is not as obvious. The result of the hierarchy algorithm

for this dataset is shown in Figure 4.47b. As expected device 1003 is placed higher in the hierarchy,

otherwise the top two levels of the grid structure remain unchanged from the Vrms result for the

smaller top level cluster. The structure of the larger cluster remains undetermined with poor

clustering performance with both Vrms and transient data sets.
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Figure 4.47: Left: Dtrans
p→d calculated for the Napali dataset containing transient anomalies. Right:

Hierarchical clustering dendrogram.

Finally, clustering was performed by examining the THD across all of the Napali events. Only

2 events in the entire dataset triggered exclusively due to the THD metric surpassing the threshold.

As such, in order to obtain enough data to calculate the pairwise dissimilarity matrix, THD was

computed for every event collected by Napali. The pairwise dissimilarity function used for clustering
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was the absolute value of the difference between the THD values between devices p and d as shown

in Equation 4.8.

Dthd
p→d =

1

n

∑
n

|THDp − THDd| (4.8)
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Figure 4.48: Left: Dthd
p→d calculated for the entire Napali dataset. Right: Hierarchical clustering

dendrogram.

The computed pairwise dissimilarity matrix is shown in Figure 4.48a. The pairwise dissimilarity

matrix looks quite different from the ones derived with Vrms and transient events. Particularly,

devices 1003, 1005, 1021, 1023 and 1024 exhibit, THD reading is significantly higher then the rest.

Clustering algorithm result is shown in Figure 4.48b. As expected devices 1003, 1005, 1021, 1022

and 1023, are placed in a separate cluster resulting in a tertiary top level division. Otherwise the

other two clusters remain unchanged from the previous results.

Event Clustering Evaluation

There are two substations which feed the UH power grid: substation M and substation L.

Each substation has multiple circuits labeled alphabetical. Finally each circuit has a subcircuit

labeled with a number. For example a building connection MA3 which powers the POST building

is originating from substation M circuit A line 3. Using Figure 4.7, each OPQ device was paired a

power line supplying it’s location. This information along with the top level cluster ID generated

from Vrms and transient clustering is shown in Table 4.8

Interestingly, the top level clusters extracted from both Vrms and transient metrics follows closely

to the top level hierarchy of the power grid itself. This has several implications. First of all, Napali
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Table 4.8: Gridwide events with collocated and non-collocated meters which impacted only a
portion of the power grid

Device Powerline Cluster

1001 lb2 1
1008 lb2 1
1003 la2 1
1009 la3 1
1025 la3 1
1000 ma3 2
1002 ma3 2
1005 mb5 2
1006 ma4 2
1007 ma4 2
1010 ma3 2
1021 ma3 2
1022 ma1 2
1023 ma5 2
1024 mb3 2

statistical trigger could utilize this clustering in order to improve scalability. Once the clusters

have been established, only neighboring clusters need to be explored for subthreshold events. Most

importantly, the clusters themselves are can be established with no prior knowledge of the power grid

topology. Secondly events can be localized to the individual clusters via subthreshold triggering,

thus allowing for event epicenter location. Both of these features can be used to improve Napali.

THD clustering produced a result which is dramatically different from the other two metrics.

While it is unclear why this is is the case, possible explanations are: local noise and building level

filters. THD at any given location is a sum of THD originating from the the grid and THD origi-

nating from the local sources. It’s possible that some buildings have much better THD mitigation

techniques in place the others. Alternatively, it’s possible that some locations house sources of

significant THD noise. For example the highest average THD across any building originated from

device 1005 located at the UH parking structure. A newly deployed 1MW solar farm located on

the roof of this parking structure may be the cause of the additional THD noise. Device 1003

located in keller hall was housed in the Lava Lab, a location with a substantial amount of electrical

equipment. IT Building, the location of the device 1024, is the hub of the UH IT infrastructure,

and is likely a candidate for higher then normal local THD noise.

4.4.2 Subthreshold Triggering Advantage

The level of analysis shown in the previous section would be impossible with a self-triggered

dataset. Without subthreshold data the top level clustering would consist of 4 individual clusters
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Figure 4.49: Two of the largest magnitude events recorded by the OPQ network. Right: Temporal
representation. Left: Difference between the minimum and maximum Vrms.

instead of just 2. It should be noted that during this analysis we found it impossible to reconstruct

lower sub-grid hierarchy from events that affected the entire higher level. For example, consider

the two most severe events that OPQ observed during the UH deployment as shown in Figure

4.49. With all of the devices passing the voltage sag Vrms threshold, previous sub-grid structure

is no longer visible. A simple explanation for loss of this hierarchy is propagation of the power

quality events from the top of the hierarchy down operates differently from the events discussed

previously. If an event occurs in a subgrid it must propagate up the power delivery infrastructure

to affect a neighbouring subgrid. On the other hand, events that affect the entire network, it never

needs perform lateral jumps in the hierarchy. As distributed power generation overtakes the large

centralized power plants, this type of grid partitioning and monitoring will become increasingly more

important. Instead of monitoring a single power producing entity such as a coal or natural gas

plant, many distributed renewable and non-renewable power sources will need to be monitored for

their power quality contribution. Power quality disturbances have the greatest effect downstream
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of the power delivery hierarchy. Napali is well suited for monitoring power production at the leaf

nodes of the electrical distribution system, and separate local noise from partial gridwide events.

Self-Triggering systems are incapable of performing this task, while Naive methods do not scale

well enough to support potentially thousands of monitoring sites. Napali on the other hand, has

proven to operate efficiently, resiliently and accurately in the power quality domain.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Application of Napali in Other domains

Sensor networks are prolific in today’s world. Industrial process and environment monitoring

is striving to make the world more efficient and productive. Medical and Personal sensing is a

welcome addition to improving health care and quality of life. Many of these fields operate in

regimes suitable for Napali. The results of my research provide evidence that Napali is well suited

for sensor networks operating in domains with:

• Signal to noise ratio of > 1.

• Consensus based event detection.

• Two way communication between the device and sink.

Any monitoring situation which requires a consensus of multiple devices, with individual devices

unable to ascertain the validity of an anomaly is well suited for Napali deployment. In this section I

review potential applications of Napali to several domains intrinsically different from power quality

monitoring, while still adhering to the constraints outlined above.

5.1.1 Earthquake detection

Detection of seismic phenomenon is a task well suited for sensor networks. Single location

monitoring is unfeasible, due to a multitude of factors. Local noise from human activity results

in a large number of false positives. Furthermore, single location monitoring is useless for devel-

opment of an early warning system. Earthquake detection relies on prompt detection of P-waves,

or pressure waves. These waves travel faster than their more destructive counterpart: S-waves. A

prompt detection and characterization of a P-wave can provide an early warning of an impending

catastrophe. A large number of sensor networks of varying complexity and sophistication have been

deployed in order to monitor geographic areas for seismic activity.[8][42][20][12]

In their paper “Lessons Learned from Operating an On-site Earthquake Early Warning System”[42]

authors Zaicenco and Weir-Jones describe the main challenges for designing and operating an earth-

quake detection system:

1. Unknown direction of a potential seismic event, since sources capable of generating the ground

motion that exceeds design parameters are spread around the region.

2. Multiple sources of industrial noise at the site: highway traffic, railroad, fishery, heavy trucks

driving several meters away from the instrumented area;
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3. Requirement for the system to operate 24/7 in the autonomous mode for several years;

4. High cost of a potential false alarm, which might result in closing the traffic on the major

highway.

Their experience comes from operation of borehole sensor arrays located along the highways

of British Columbia. Each sensor array is connected via a fiber drop to the central computer.

Every measurement performed by the sensor array is transmitted to a main processing unit for

P-wave analysis. The triggering algorithm first precomputes a p-wave metric for each sensor, and

uses a threshold based algorithm for earthquake detection. This is a well established system which

was able to detect and provide early warning for multiple earthquakes during its operational phase

2009-2011. The design of this system is very similar to a Naive triggering method for Power Quality

monitoring. All data is funneled to the central sink and processed on site.

The California Integrated Seismic Network is another seismograph sensor network consisting

of over 400 high quality borehole sensors.[37] Similarly to the On-site Earthquake Early Warning

System, the California Integrated Seismic Network transmits all of the sensor data to the central

sink. The California Integrated Seismic Network is now a part of ShakeAlert, a US-based effort to

integrate seismic prediction into actionable intelligence.

Another approach to earthquake monitoring comes from the newly emerged IOT domain. The

cellphone based Earthquake Network [12] utilizes smartphone accelerometers in order to detect

P-wave propagation throughout the world. As a part of the Earthquake Network, cellphones

which are at rest and plugged into a power source will monitor the internal accelerometer for

abnormalities. If the inertial tensor recorded by the cellphone passes a threshold a message will

be transmitted to a central cloudbased sink. The cloudbased sink in turn uses device location and

statistical clustering in order to determine if a P-wave has been detected. Another IOT sensor

network designed for earthquake detection is called Earthcloud.[20] This sensor network utilizes

dedicated low cost sensors which communicate via the Internet to the centralized sink. Similarly

to the Earthquake Network, Earthcloud utilizes the number of “prewarnings”(devices which passed

the local threhold) in order to determine if an earthquake is taking place.

Sensor networks described above fall into the two categories described in the previous chapters.

The On-site Earthquake Early Warning System and California Integrated Seismic Network are the

Naive approaches with all of the sensor data funneled to the sink. Earthcloud and Earthquake

Network on the other hand are similar to the self-triggered system, with additional statistical

analysis performed at the sink. All three networks maintain two way TCP/IP link between devices

and the sink. With a relatively small number of nodes the On-site Earthquake Early Warning

System and California Integrated Seismic Network are able to operate in the Naive mode due to

relatively low bandwidth requirements. On the other hand, Earthquake Network app has 4 million

downloads and 75000 active cellphones, and as such is forced to operate in the self triggered mode.

Napali methodology could enhance both of these event detection topologies. “High quality”
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earthquake monitoring networks such as California Integrated Seismic Network serve a dual pur-

pose. First and foremost, they are the nation’s early warning system for disaster mitigation. Sec-

ond, they are a research and analysis tool used by geophysicist to study earthquake propagation,

localization and classification. Application of Napali to earthquake detection could:

1. Reduce the bandwidth requirement for operating a seismic sensor.

2. Preserve sub-threshold earthquake data for earthquake analysis.

3. Reject single point anomalies resulting from human activity.

Napali approach could aggregate multiple measurements in order to conserve bandwidth for below

threshold events. If a local threshold is passed, the measurement would be forwarded to the sink

immediately in order to provide a timely latency. If the sink determines that a P-wave has been

detected, raw, high resolution data can be requested from the seismic sensor.

Currently IOT approaches are useless for scientific application, since only a “prewarning” is

transmitted to the sink without the high resolution waveform. With Napali useful high resolution

data can be transmitted for later scientific analysis.

5.1.2 Lightning Detection

United States National Lightning Detection Network operates over 100 sensors across the United

states[9]. These lightning detectors create a sensor network used to record, detect, localize and

classify lightning strikes. Data from this network is made available for utilities, National Weather

Service and to meteorologists for analysis and study. Potential uses for this data include coopera-

tion with the Forestry Service, space flight providers, air traffic control, and wind farm operators in

order to mitigate lighting risk.[27] Lightning detectors are placed in remote areas and communicate

via satellite in order to limit interference from anthropogenic sources. The operational cost of such

network can be reduced by placing the lighting detectors in urban centers and other locations they

are supposed to protect. The local man-made noise presents an issue for traditional Self-Triggered

operation of such a network, however using Napali, this noise can be filtered out. Napali has the

potential to provide lighting detection at a fraction of the cost of a satellite based system. Further-

more, sub-threshold data from Napali would allow for better event localization and classification

than a conventional Self-Triggered system.

5.1.3 Gunshot detection acoustic sensor networks

Gunshot detection acoustic sensor networks are generally placed in urban areas. A multitude

of these sensor networks have been proposed in the literature, however the only known operational

systems seem to be single location multi-microphone devices. [6] [19] There are however patents

relating to multi-sensor gunshot detection systems, so it is possible that such systems are operated
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covertly. All of these systems rely on feature extraction and triggering performed on the device

itself, making them Self-Triggered networks. Napali could enhance the detection capability of these

networks through sub-threshold detection as well as on the fly localized false positive rejection.

Once the waveforms from the sensors are acquired, more sophisticated algorithms can be utilized

for event localization.

5.1.4 Neutrino Physics

Electron anti-neutrino(ν̄e) is a particularly interesting flavor of a neutrino which interacts with

a very specific signature. An inverse beta decay process is characterized by an ν̄e interaction with

a proton, resulting a creation of an electron and a positron:

ν̄e + p→ e+ + n (5.1)

The positron is immediately captured resulting in production of two gammas:

e+ + e− → γ + γ (5.2)

This is known as the prompt event and it is well characterized in both energy and time. The neutron

will travel through its medium until capture by a nucleus of an atom, resulting in additional gamma

release. This is known as the delayed event, and it will occur within 200us of the initial interaction.

The advantage of the inverse beta decay is that it allows for a well characterised and established

detection mechanism for neutrino measurement. In fact it’s the only mechanism we are aware of

which uniquely identifies the neutrino.

Many neutrino experiments utilize inverse beta decay as a main physical mechanism.[4][23]

Unfortunately the chance of the neutrino interaction is extremely small, with many experiments

expecting only a few events per day. In order to maximize data-rate a larger observed volume and

a larger number of optical detectors are required. As such waveform samplers are utilized instead

of common ADCs for event capture.

Waveform samplers trade dead time for low power per channel. Intrinsically, waveform samplers

are not ADC in and of itself, instead they are an analog storage medium. Modern waveform samplers

can store 1ms or more of analog waveform sampled at > 10Gsps. Along with a slow ADC and a

triggering system, a waveform sampler allows for extremely fast waveform extraction at the cost

of some experiment dead time. The waveform sampler is filled in a round robin fashion, until

the triggering systems determines that an event is occurring. Once the anomalous condition is

identified, the sampler stops, and a slow ADC digitizes all or a portion of the waveform buffer,

The digitized signal is then passed further up the triggering chain. A Waveform digitizer triggering

system is generally a single discriminator per channel built into the the waveform sampler ASIC.

At the lowest layer, the triggering systems count the number of channel discriminator hits and
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converts them into a triggering metric. In some cases the geometry of trigger bits is also used in

trigger determination. This layer of the triggering system is commonly referred to as L0.

Tuning the trigger discriminator threshold is a tedious task. The detectors which the ADCs

service are generally optical photon counters sensitive to single photon hits. However, at this level

of sensitivity single photon level noise is prevalent in all optical detector used to date. This noise,

known as dark counts, is usually on the order of a single photon signal, which makes a single

channel incapable of discriminating false positives. Only via the global triggering system can the

validity of an event be ascertained. On the low event rate experiments, the trigger thresholds are

tuned to detect a single photon hit, and thus are subject to a lot of noise.[23] Furthermore, the

physics process of interest is usually buried in the common physical processes which occur at a

much higher rate. This means that the triggering system must discriminate between interesting

physics, common physical processes and detector noise. If the common physical processes are not

filtered at the triggering level, the resulting digitization dead time results in an unusable detector.

Napali, in conjunction with additional hardware, could support uninteresting event rejection in

low event rate physics experiments utilizing waveform samplers. Most of the machinery used by

Napali is already present. Each device contains a waveform buffer, and is able to transmit some or

all of it to the sink at the triggering systems discretion. If the single bit discriminator is instead

replaced with a 3bit ADC, the Napali statistical triggering system can be used to filter unwanted

events without compromising trigger efficiency. Furthermore, the 3 bit digitizer could be used for

both high energy prompt and low energy delayed event without compromising detector dead time.

5.2 Future Work

There are still several unanswered question with regards to Napali benefits. From the claims

described in Section 1.3, the power failure resiliency claim, and the privacy claim remain unproven.

A strategy for evaluating these claims is described in the following sections.

5.2.1 Power failure resiliency

In order to evaluate Napali power failure resiliency, one of two methods must be employed.

The most straightforward way is to add a battery backup the to OPQ Box and perform another

evaluation deployment. The OPQ Box is already designed for battery backup, since the entire

device (both the mains and the isolated side), can be powered from a common port. Furthermore,

the expansion header on the OPQ Box is designed to accept as well as deliver power. A block

diagram for the proposed battery backup subsystem is shown in Figure 5.1. A single cell 14430

LiFePo battery with a capacity of ≈ 1Wh could power the OPQ Box for 2 hours in case of a power

outage. A charge controller would keep the battery cell charged during normal operation and the

DC-DC boost converter would provide 5V to the OPQ circuitry in case of a mains failure. This
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Figure 5.1: Proposed battery backup subsystem.

would allow the OPQ Box to record all of the data leading up to the power failure, and if the power

outage is shorter than 2 hours capture the moment the power resumes. A PCB and the battery

cell would fit into the existing OPQ Box enclosure with minimum modifications.

Another way to provide power failure resiliency is to add non-volatile memory to the sampler

DSP. Every measurement taken by the DSP would be transferred to the non-volatile memory utiliz-

ing it as a circular buffer. This memory would serve as a black box recording the last measurements

taken by the OPQ Box prior to the power failure. Flash is unsuitable for this due to a relatively

small number of write cycles prior to failure, however FRAM devices would be perfect for this

application. 2Mb FRAM devices are commonly available on the market, and would allow for an

11s recording window. The write endurance of 1014 IOPs results in the device remaining functional

for 6000 years. Data retention of a common FRAM device is 5 years allowing for the data to remain

retrievable through the worst of the power outages. The disadvantage of the non-volatile approach

is the device would not be able to capture the moment the power delivery resumes.

5.2.2 Privacy Implications

In order to compare the privacy implications of power quality monitoring, and evaluate how

Naive and Self-Triggered methods compare, a residential deployment of the OPQ devices must

be carried out. Due to the time constraints such deployment was outside of the scope of this

dissertation, however it would be straight forward to carry out. The main goal of this evaluation

would be to empirically measure how much of the end user’s activity can be ascertained from

the local events which are recorded at their residence. As such the subjects of these evaluation

would deploy the OPQ device at their place of residence and carefully record the timestamp of

every electrical appliance they interact with. From laboratory tests, the OPQ Box was able to

detect voltage drops associated with common electrical equipment as shown in Figure 1.2. Since

Napali ignores these events, it is expected that it would fare better with respect to end user
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privacy compared to the Naive and Self-Triggered methods. Napali does however transmit extracted

metrics, however these are aggregated at 1s intervals. It’s unclear how much privacy reduction the

Napali methodology would be responsible for, or if the aggregation window length has an impact

on privacy as a whole.

5.2.3 Grid Hierarchy Clustering on a Larger Scale

In Section 4.4.1, I described how the grid hierarchy can be extracted from subthreshold infor-

mation in events captured by Napali. The advantages of event clustering are significant:

• Napali scalability can be linearized by concentrating subthreshold triggering to the cluster

boundaries.

• Napali can localize the event origin in the grid hierarchy by examining affected clusters.

More research is required in order to better understand how to build the hierarchical map of the

grid via subthreshold events in an organic automated way. This can potentially be accomplished

by adding an additional layer above the Napali trigger in order to cluster and organize events from

new devices added to the network. Every time a device is added to the network, Napali would

start by acquiring its subthreshold data if requested regardless of which cluster the over-threshold

event originated from. As enough data is acquired, the new device will be placed in the appropriate

cluster in the triggering hierarchy, and restart normal operations.

5.2.4 Artificial Intelligence Integration into the Napali Trigger.

It is unclear if artificial intelligence approaches such as machine learning would fare better than

the statistical trigger currently employed in Napali. While outside the scope of this dissertation,

the OPQ deployment provided a large database of metrics and events for training and testing

AI constructs. Furthermore, the Makai triggering service is flexible enough to accommodate any

number of triggering algorithms alongside Napali for evaluation, characterization and comparison.

The University of Hawaii power grid and the OPQ network remain a perfect test bed for evaluation

of new and emerging power quality detection techniques through its flexible software architecture

from hot-plugable metric extraction, to hot-plugable event detection and capture.

5.3 Summary of contributions

In this dissertation I showed that Napali provides a novel architecture that is both a feasi-

ble solution to the problem of distributed power quality monitoring and that provides significant

benefits over the two standard alternative architectures (all computation/storage at nodes, all com-

putation/storage at the sink). This was performed via demonstration of validity of the five claims
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stated in Sections 1.6. The claims and contributions of this dissertation are summarized in the

sections below.

5.3.1 Napali minimizes bandwidth usage

Section 4.3.1 shows the empirical comparison of Napali, Self-Triggered and Naive triggering

system bandwidth consumption in the case of the OPQ deployment. Naturally, Napali and Self-

Triggered methods outperformed the Naive method when it came to bandwidth consumption by a

factor of 100x. By only selecting the anomalous temporal regions for readout, significant bandwidth

reduction was observed. Furthermore, Napali outperformed the Self-Triggered method by further

downselection of events to those that impact the power grid. While the Napali events were larger in

size since they constituted raw waveform from multiple devices, they were far fewer in number. As

such Napali was able to achieve a 4x bandwidth reduction over the Self-Triggered method, emerging

as a clear winner when it comes to bandwidth consumption.

5.3.2 Napali minimizes sink processing requirement

Section 4.3.1 shows the analytical comparison of Napali, Self-Triggered and Naive triggering

system bandwidth consumption in the case of the OPQ deployment. Naturally, the Self-Triggered

method fared the worst in this evaluation, since every sample from every device needed to be

processed on the sink. For Napali, overhead in the event detection is minuscule, since the metric

comparison and filtering is linear with the number of devices, resulting in a modest resource con-

sumption increase compared to the Self-Triggered method. The Self-Triggered method arguably

requires no sink resources when it comes to event detection, however the higher levels of event

evaluation are impacted by the additional data burden. For every false positive event that the

Self-Triggered framework captures, an additional computational cost is incurred. While the char-

acterization of this cost is beyond the scope of this work, it was shown that the incurred cost is

significant when compared to Napali.

5.3.3 Napali mitigates device latency effects

Section 4.3.3 shows the analytical comparison of Napali, Self-Triggered and Naive triggering

system device latency in the case of the OPQ deployment. Similar to the previous section, no

direct comparison between Napali and Self-Triggered event detections methods could be made,

since there is no latency impact on the Self-Triggered framework. The Naive triggering method,

on the other hand, required an extremely large waveform buffer in order to accommodate latencies

commonly seen by the OPQ Boxes during the University of Hawaii deployment. Napali was easily

able to accommodate latencies of up to an hour by utilizing the waveform buffer in the device

itself. This is significant, since power quality problems could easily result in parts of the network
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infrastructure such as WIFI access points and routers becoming unavailable.

5.3.4 Gridwide monitoring via leaf nodes

Section 4.3.5 shows that the edge computing centered approach to power quality monitoring

can result in high quality full and partial gridwide event detection via leaf node monitoring. The

main evaluation of this claim comes from the ground truth measurements delivered via the Utility

scale power monitors deployed across the University of Hawaii Campus. Napali was able to capture

every event observed by the meters located higher on the power grid hierarchy apart from localized

single phase faults. The main contribution of this claim is that the power grid can be monitored

from regular household voltages without any contribution from the utility company. This opens

a door to an oversight mechanism to monitor Utility due diligence when it comes to the power

quality standard. Furthermore, OPQ was demonstrated to be a reliable system which can be

used in conjunction with, but independently from, the Utility for power grid protection. With the

increasing concern about Utility cyber security, an additional independent system is both desired

and required.

5.3.5 Sub-threshold data acquisition is a viable event detection strategy

Section 4.3.6 describes the subthreshold detection capability of Napali in the OPQ network.

The main claim of this section is that Napali is able to capture full and partial gridwide events

via subthreshold triggering. Evaluation of this claim was accomplished via ground truth compar-

ison. While the pool of the ground truth confirmed partial gridwide events which are useful for

sub-threshold evaluation is small, Napali was able to both capture the over threshold and under

threshold waveforms associated with each one. The main contribution of this claim is that the sub-

threshold event component is useful in event detection, localization and system scalability. The

consequence of this is shown in Sections 4.4.1 and 4.4.1 where the University power grid was par-

titioned into the two substations using the subthreshold data, something that would be impossible

to do via the Self-Triggered event detection method.

5.3.6 Open Power Quality System

Another contribution of this work is the Open Power Quality monitoring system. OPQ Box

device has been fully characterized against synthetic data in the laboratory setting as shown in

Section 4.1, and compares favorably to the commercial offerings. Furthermore the metric extraction

algorithms utilized in the OPQ Box have been compared to the Utility meter counterparts in Section

4.3.5, to once again favorable agreement. The backend infrastructure had 97% availability during

the deployment, brought down only by a power outage and system updates.
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5.3.7 Napali in other domains

Applications of Napali in other domains are discussed in Section 5.1. This evaluation shows

that Napali usability is not limited to the power quality domain. Instead Napali’s edge-centric

sub-threshold detection approach to event detection localization and capture is novel, useful, and

can be applied to a variety of important domains.
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