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1 Introduction

The Dynamic Time Warping algorithm (DTW) is a well-known algorithm

in many areas. While first introduced in 60s [1] and extensively explored

in 70s by application to the speech recognition [2], [3] it is currently used in

many areas: handwriting and online signature matching [4] [5], sign language

recognition [6] and gestures recognition [7] [6], data mining and time series

clustering (time series databases search) [8] [9] [10] [11] [12] [13], computer

vision and computer animation [14], surveillance [15], protein sequence align-

ment and chemical engineering [16], music and signal processing [17] [14] [18].

This work aims to benefit the software metrics analysis through the applica-

tion of the Dynamic Time Warping algorithm to the software development

telemetry data.

In this report we introduce and discuss the “naive” DTW and idea be-

hind it in the section 2. The DTW customization through local and global

parameters summarized in the section 3. The DTW speedup through the

scaling discussed in the section 4. In the section 5 we will show how DTW

could be employed to identify similar to query subsequences in the long data

streams. Finally we will show the current progress in the DTW application

to the software development telemetry data in 7 and outline future directions

in 8.

2 DTW Algorithm

DTW algorithm has earned its popularity by being extremely efficient as

the time-series similarity measure which minimizes the effects of shifting

and distortion in time by allowing “elastic” transformation of time series in

order to detect similar shapes with different phases. Given two time series

X = (x1, x2, ...xN), N ∈ N and Y = (y1, y2, ...yM), M ∈ N represented by

the sequences of values (or curves represented by the sequences of vertices)

DTW yields optimal solution in the O(MN) time which could be improved
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Figure 1: Raw time series, arrows show the desirable points of alignment.

further through different techniques such as multi-scaling [17] [19]. The only

restriction placed on the data sequences is that they should be sampled at

equidistant points in time (this problem can be resolved by re-sampling).

If sequences are taking values from some feature space Φ than in order

to compare two different sequences X, Y ∈ Φ one needs to use the local

distance measure which is defined to be a function:

d : Φ× Φ→ R ≥ 0 (1)

Intuitively d has a small value when sequences are similar and large value

if they are different. Since the Dynamic Programming algorithm lies in the

core of DTW it is common to call this distance function the “cost func-

tion” and the task of optimal alignment of the sequences becoming the task

of arranging all sequence points by minimizing the cost function (or distance).

Algorithm starts by building the distance matrix C ∈ RN×M representing

all pairwise distances between X and Y . This distance matrix called the
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Figure 2: Time series alignment, cost matrix heatmap.

local cost matrix for the alignment of two sequences X and Y :

Cl ∈ RN×M : ci,j = ‖xi − yj‖ , i ∈ [1 : N ], j ∈ [1 : M ] (2)

Once the local cost matrix built, the algorithm finds the alignment path

which runs through the low-cost areas - “valleys” on the cost matrix, Figure

2. This alignment path (or warping path, or warping function) defines

the correspondence of an element xi ∈ X to yj ∈ Y following the boundary

condition which assigne first and last elements of X and Y to each other,

Figure 3.

Formally speaking, the alignment path built by DTW is a sequence of

points p = (p1, p2, ..., pK) with pl = (pi, pj) ∈ [1 : N ]× [1 : M ] for l ∈ [1 : K]
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Figure 3: The optimal warping path aligning time series from the Figure 1.

which must satisfy to the following criteria:

1. Boundary condition: p1 = (1, 1) and pK = (N, M). The starting

and ending points of the warping path must be the first and the last

points of aligned sequences.

2. Monotonicity condition: n1 ≤ n2 ≤ ... ≤ nK and m1 ≤ m2 ≤ ... ≤
mK . This condition preserves the time-ordering of points.

3. Step size condition: this criteria limits the warping path from long

jumps (shifts in time) while aligning sequences. While this condition

will be discussed in greater details in the Section 3, for now will use the

basic step size condition formulated as pl+1− pl ∈ {(1, 1), (1, 0), (0, 1)}.
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The cost function associated with a warping path computed with re-

spect to the local cost matrix (which represents all pairwise distances) will

be:

cp(X, Y ) =
L∑

l=1

c(xnl
, yml

) (3)

The warping path which has a minimal cost associated with alignment

called the optimal warping path. We will call this path P ∗.

By following the optimal warping path definition in order to find one, we

need to test every possible warping path between X and Y which could be

computationally challenging due to the exponential growth of the number of

optimal paths as the lengths of X and Y grow linearly. To overcome this

challenge, DTW employs the Dynamic Programming - based algorithm with

complexity only O(MN).

The Dynamic Programming part of DTW algorithm uses the DTW dis-

tance function

DTW (X, Y ) = cp∗(X, Y ) = min
{
cp(X, Y ), p ∈ PN×M

}
(4)

where PN×M is the set of all possible warping paths and builds the accu-

mulated cost matrix or global cost matrix D which defined as follows:

1. First row: D(1, j) =
∑j

k=1 c(x1, yk), j ∈ [1, M ].

2. First column: D(i, 1) =
∑i

k=1 c(xk, y1), i ∈ [1, N ].

3. All other elements: D(i, j) = min {D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)}+
c(xi, yj), i ∈ [1, N ] , j ∈ [1, M ]).

The time cost of building this matrix is O(NM) which equals the cost of

the following algorithm, where X and Y are the input time series and C is

the local cost matrix representing all the pairwise distances between X and

Y :
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Algorithm 2.1 AccumulatedCostMatrix(X, Y, C)

1: n ← |X|
2: m ← |Y |
3: dtw[] ← new [n×m]

4: dtw(0, 0)← 0

5: for i = 1; i ≤ n; j + + do

6: dtw(i, 1)← dtw(i− 1, 1) + c(i, 1)

7: end for

8: for j = 1; j ≤ m; j + + do

9: dtw(1, j)← dtw(1, j − 1) + c(1, j)

10: end for

11: for i = 1; i ≤ n; j + + do

12: for j = 1; j ≤ m; j + + do

13: dtw(i, j)← c(i, j)+min {dtw(i− 1, j); dtw(i, j − 1); dtw(i− 1, j − 1)}
14: end for

15: end for

16: return dtw

Once the accumulated cost matrix built the warping path could be found

by the simple backtracking from the point pend = (M, N) to the pstart = (1, 1)

following the greedy strategy as described by the Algorithm 2.2:
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Algorithm 2.2 OptimalWarpingPath(dtw)

1: path[] ← new array

2: i = rows(dtw)

3: j = columns(dtw)

4: while (i > 1) & (j > 1) do

5: if i == 1 then

6: j = j − 1

7: else if j == 1 then

8: i = i− 1

9: else

10: if dtw(i−1, j) == min {dtw(i− 1, j); dtw(i, j − 1); dtw(i− 1, j − 1)}
then

11: i = i− 1

12: else if dtw(i, j−1) == min {dtw(i− 1, j); dtw(i, j − 1); dtw(i− 1, j − 1)}
then

13: j = j − 1

14: else

15: i = i− 1; j = j − 1

16: end if

17: path.add((i, j))

18: end if

19: end while

20: return path

3 DTW Customization

In order to improve performance and customize the sensitivity of the “naive”

Dynamic Time Warping algorithm various modification were proposed. This

section outlines the major modifications such as the step size conditions, step
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Figure 4: The optimal alignment of the time series from the Figure 1.

weighting and the global path constraints.

3.1 Step Function (Slope Constraint)

When there is no differences between the time-series, the warping path co-

incides with the diagonal line i = j, but as differences between time-series

increase, the warping path deviates more from the diagonal line by matching

similar time-axis fluctuations. While DTW finds the optimal alignment of the

time-series, sometimes it tends to create an unrealistic correspondence be-

tween time-series features by aligning very short features from the one of the

series to the long features on the second time-series. The feature-stretching

phenomena could be seen at Figure 10: the red-colored time-series shifted

to the right matching blue time series peak and collapsing low-amplitude

features. In order to avoid such a phenomena the warping path is subject

to constraints on the each step. This constraints implemented as the pos-

sible relations between several consecutive points on the warping path. For

example after moving in the same direction say horizontal for k consecutive

points warping path is not allowed to continue in the same direction before

stepping l points in the diagonal direction, Figure 5.
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Figure 5: Step function constraints.

3.2 Weighting

Previously we defined the measure of distance between time series as the cost

function (3), which essentially is a summation of pairwise distances between

corresponding points at time-series X and Y . By adding the weights to the

each of the distances based on the step direction we could penalize or favor

certain types of point-to point correspondence. While Sakoe and Chiba in

[3] report superiority of the symmetric weighting for the Japanese speech

recognition, the idea behind weighting seems to be valid and interesting and

we plan to evaluate the performance of asymmetric weighting when applied

to the software development telemetry time-series.

3.3 Global path constraints

As we shown before, the computational cost of DTW algorithm is O(NM)

and algorithm requires a storage for two matrices of the size N×M . In order

to improve the computational cost and optimize the DTW sensitivity simi-

larly to the step function constraints global constraints were introduced.

The “Sakoe-Chiba band” appeared in [3] and “Itakura parallelogram” in [20],

both global path constraints shown at Figure 7 and define the set of points

available for DTW alignment only from the non-shaded regions.

The Sakoe-Chiba band runs along the main diagonal, i = j, and con-

straints the range of warping while specified by the fixed width R ∈ N. The
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Figure 6: Weighting coefficients w(k) for symmetric (left) and asymmetric
(right) forms.

parameter R specifies the length of the vertical vector from the main diago-

nal to the upper boundary of the band and symmetrically the length of the

horizontal vector from the main diagonal to the lower boundary of the band:

|i(k)−m| ≤ R, |j(k)−m| ≤ R, (5)

Where m is the corresponding coordinate at the main diagonal and k indi-

cates the k-th point of the warping path.

The Itakura parallelogram also constraints the warping range and speci-

fied by the S ∈ R>1 parameter.

4 DTW Optimization

While we have shown the reduction of the DTW algorithm computational

cost in the section 3.3, another popular method of the DTW speed-up is the

time-series approximation through the scaling as shown in [18] [21].
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Figure 7: Global path constraints, left: Itakura parallelogram, right: Sakoe-
Chiba band.

4.1 Scaling

The scaling is also known as the dimensionality reduction and aiming the

reduction of the lengths N and M of the input time-series through coarsen-

ing. This could be accomplished through the downsampling of the low-pass

filtered series, or by linear approximation, [21]. The only backdraw of such

approach is that after reaching of the certain level of coarsening the alignment

becomes completely useless [18].

5 Query-By-Example

So far we have discussed the DTW algorithm application for the time-series

alignment and DTW-based similarity measure. In this section we will fo-

cus on the “query-by-example” (QBE) [22] or “query-by-humming” [23]

concept and specifically “time-boxes” [24] [25] and “sketching” [26] ap-

proaches which we are considering as the primary candidates for the future

Hackystat module user-interaction model.
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Figure 8: The QuerySketch applet screenshot showing the sketched graph
and matching stocks.
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Figure 9: The figure from E. Keogh, H. Hochheiser, and B. Shneiderman,
“An augmented visual query mechanism for finding patterns in time series
data”.

Query by Example or QBE approach was first introduced as the database

query language for relational databases. It was published by IBM Research

during 70s in parallel to the development of SQL. It is the first query language

where user would enter example elements, commands and conditions while

using graphical tables representation. QBE was developed targeting non-

programmer user working with databases and currently adopted by many

graphical front-end database utilities.

Wattenberg adopted QBE approach for the querying the time-series databases

using a graphical applet named QuerySketch [26]. Within the QuerySketch

applet environment user allowed to perform a time-series database query by

sketching own pattern of interest as shown at the screenshot of the online

version of QuerySketch, Figure 8.

Different approach based on the interactive filtering of existing time-series

by selecting acceptable “box” ranges was implemented by Keogh et al. [24],

see Figure 9 from the original paper explaining the TimeSearcher UI design.
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6 Time-series indexing

It is well understood that the direct search for similarity in the time-series

databases is computationally expensive. As the remedy for the fast turn-

around of database queries “time-series indexing” technique was introduced.

Essentially any of the time-series of length n can be considered as a tuple

in an n-dimensional space. Once such a space is indexed, the search usually

takes a linear time by performing a simple comparisons. While “dimension-

ality curse” makes the direct indexing of this space inefficient, the idea is to

improve indexing through the application of some dimensionality reduction

technique that transforms the n item long time series into a lower dimensional

space with k dimensions where k << n. The SVD decomposition, the Fourier

transform (and the similar Discrete Cosine transform), the Wavelet decom-

position, Multidimensional Scaling, random projection techniques, FastMap

(and variants) are the methods usually used, [27].

7 Software metrics application

As the immediate application of the “naive” algorithm discussed above we de-

veloped the Hackystat ProjectBrowser plugin during the Fall 2008 semester.

This plugin called “Trajectory” and the screenshot shown at the Figure 10.

Currently, by employing other Hackystat modules such as Sensorbase en-

gine, Dailyprojectdata and Telemetry the Trajectory software runs within

the ProjectBrowser infrastructure and allows user to apply the DTW al-

gorithm aligning the set of two arbitrary selected telemetry streams from

independent projects and date ranges. Once DTW is computed, Trajectory

render two additional to the standard telemetry plots - first is the normal-

ized time-series plot and the second one is the DTW alignment plot. The

Euclidean distance is computed for both. Currently Trajectory implements

the various step constraints following Sakoe&Chiba [3] but the windowing

and the open-end alignment are still in the development.
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The primarily goal for the Trajectory plugin was a proof of the concept

and the evaluation of the DTW applicability for the software development

telemetry time-series. Secondary goal was the engineering of the DTW imple-

mentation itself. Due to the limited functionality of the implemented DTW

it is impossible to evaluate applicability immediately, but during the litera-

ture review and the iterative development process we found enough evidence

suggesting that the probability of the application to be useful is relatively

high. As per engineering the DTW plugin, two abstraction layers were cre-

ated - first is the data transformation layer which communicates with the

Sensorbase and Telemetry services retrieving the user-defined raw Telemetry

data, validating and curing the time-series by adding missing data and finally

performing the time series normalization according to [28]. The second layer

is the DTW engine itself which takes two abstract time-series and align those

by applying the user-specified DTW algorithm.

8 Future work

During the oncoming Spring 2009 semester we are planning to finish the cur-

rent DTW implementation by adding the windowing constraints and extend

the functionality further by the drafting the query-by-example implementa-

tion as discussed in 5. Another idea discussed and sketched on paper is the

implementation of the telemetry database indexing in order to improve the

turn-around time while querying the database. Further development over

the telemetry indexing could be an autonomous engine, “telemetry crawler”

which will be finding and reporting similar pattern among the data within the

Sensorbase storage. The main idea behind such an indexing and autonomous

search lies in the splitting each of the time series into the set of overlapping

subseries (subsequences) and indexing such a pool of short sequences by

building the library (index) of patterns. Once the index is built, we are

planning to explore the not yet explored in the literature similarity measure
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Figure 10: Trajectory page screenshot.
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based on the frequency of the occurrence of the shared patterns.

9 Notes

Some of the papers I have seen while working on my report show that one of

the DTW successors, Cluster Generative Statistical Dynamic Time Warping

(CSDTW) [10], based on dynamic time warping (DTW) and hidden Markov

modeling (HMM), demonstrates superior performance over the plain DTW

or HMM and combines cluster analysis and generative statistical sequence

modeling. It might be interesting to further review the CSDTW and HMM-

based methods in particular aiming performance comparison for our needs.

Also I found that DTW has another limitation: it does not obey the

triangular inequality [29] which could be a problem while indexing time series.
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