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Abstract—Capturing and classifying power quality phenomena
is important for the smooth functioning of electrical grids. This
paper presents methods for classifying the four types of transients
(impulsive, arcing, oscillatory, and periodic notching) specified in
the IEEE 1159 Power Quality standard. Our methods implement
a tractable algorithm, which applies well understood signal
processing methods and statistical inference for feature extraction
and decision making. We tested our methods on simulated power
quality disturbances in order to demonstrate the capabilities of
the system. The results of this research include an operational
implementation of a transient classifier for Open Power Quality,
an open source distributed power quality network. Additional
functionality can be easily incorporated into the system to extend
the utility of our methods, such as a meta-analysis to capture
higher level network wide events.
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I. INTRODUCTION

Introducing renewable energy generation to existing elec-
trical grid infrastructures has proven itself to be an engineering
challenge. The transition to cleaner energy generation methods
such as wind and solar, which are inherently unpredictable,
has increased the severity and frequency of problems related
to power quality [1]. For example, sensitive instruments con-
nected to an unstable grid can be potentially de-calibrated or
damaged.

A first step to correcting power quality problems is under-
standing the problem from top to bottom. Electricity supplied
by the grid should be continuously monitored to detect and log
power quality events. Classification of power quality phenom-
ena can reveal problematic patterns in the system and provide
potential explanations for failures that can be understood and
resolved.

There is considerable research on classification of power
quality [2], [3], [4], [5], [6]. Current state of the art techniques
commonly utilize wavelet transforms for feature extraction and
then run the data through a trained neural network or decision
tree algorithm. Another approach by Manikandan, Samantaray,
and Kamwa [3] decomposes the signal using sparse signal de-
composition on an overcomplete hybrid dictionary matrix and
then extracts the power disturbance features of the decomposed
signal and classifies the transient waveforms using a decision
tree algorithm.
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In this paper, we present a tractable implementation of a
transient classification system for our open source distributed
power quality network called Open Power Quality (OPQ). By
including this transient detection system in OPQ, we can gather
information on both local transients and global transients (i.e.,
transients from a single source that were detected on multiple,
distributed sensors). This information can be used to determine
how transients and other power quality (PQ) signals propagate
throughout a power grid. Further, data metrics generated from
intermittent renewable sources, weather reports, and user re-
ports can be fused by OPQ with the transient detection results
to provide insights on how intermittent renewable energy
sources affect the quality of power on the grid.

This paper is structured as follows. Section II explains and
justifies the proposed methodology for classifying transients.
Section III describes the implementation of the methodology
on the OPQ system. Section IV reports the simulated results
of the transient detection system. Finally, Section V provides
with conclusions.

II. METHODOLOGY

The transients classified with the methodologies discussed
in this paper are defined in the IEEE 1159 Draft Recommended
Practice for Monitoring Electric Power Quality [7]. Table I
summarizes the definition and characteristics of each transient.

TABLE I. TRANSIENT CLASSES

Class Description

Impulsive Unidirectional change from the nominal waveform.
Arcing Bipolar random frequency noise.

Oscillatory Decaying oscillatory wave.

Periodic Notching  Periodic and strictly negative in power.

We use a decision tree algorithm to classify signals with
potential transients. The benefit of this approach is that it min-
imizes necessary computation. As PQ features are extracted
from the signal, the potential classes that it could fall into are
narrowed. Computationally expensive analysis can be bypassed
if simple features can rule out a class early in the process.
Leveraging this idea, the potential transients are checked to
see if they fit the classes in the same order as listed in Table
I. Once the signal is classified, then additional meta data can
be computed that appropriately details the transient.



A. Signal Decomposition

The first task is to decompose the raw signal into the
fundamental waveform and the potential transient waveform.
In the context of this application, the fundamental waveform
is expected to have little to no variation from the standard,
which is 60 Hz and 120 Vrms in the U.S. [8]. There is the
potential for simultaneous waveform distortion and transient
PQ phenomena. However, waveform distortions for frequency
phenomena are typically found to only vary by +0.1 Hz and
for voltage phenomena by 0.11.8 pu [7], whereas the transients
that the system is capturing typically have a spectral content
between 1 kHz5 MHz.

Thus, a simple digital implementation of a 4" order low
pass Butterworth filter with a cutoff frequency at 500 Hz
is justifiable and practical for this application to extract the
fundamental waveform from the raw digital signal. A different
filter could be used to achieve similar results. We decided to
use a Butterworth filter with these order and cutoff frequencies
due to the desirable property that the filter is monotonic in
both the passband and stopband, which results in a clean
decomposition. Once the fundamental waveform is retrieved,
the transient waveform is then obtained by subtracting out the
fundamental waveform from the raw signal.

B. Classifying Impulsive Transients

The first step in the decision tree algorithm is to determine
whether the transient could be impulsive. We test for impulsive
transients first since as it is computationally the cheapest to
verify. As defined by the IEEE 1159 standard, an impulsive
transient is a unidirectional change from the nominal condition
of the voltage [7]. Therefore, a simple check which ensures
that the excitation in the transient waveform is unipolar will
qualify the transient to be in the broad category of impulsive
transients.

If the transient is impulsive, then arcing and oscillatory
transients can be ruled out. Additional cases do need to be
accounted for since there is a chance that the transient could
also be periodic notching. If the impulsive transient is positive
in power, then periodic notching can be ruled out, otherwise
it needs to be tested. At this point meta-data detailing the rise
and decay time, the peak amplitude, and whether or not the
transient causes additional zero crossings in the raw signal can
be calculated and recorded with the classification.

C. Classifying Arcing Transients

An arcing transient is a burst of relatively higher frequency
noise that is random in frequency content. The arcing transient
should have more than ten zero crossings and should not have
more than two cycles with same period [7].

Thus, the test for arcing transients can be a verification of
more than ten zero crossings and a threshold for randomness in
the frequency content. The defined threshold for randomness
is whether more than two zero crossings have the same period.

D. Classifying Oscillatory Transients

An oscillatory transient is a bipolar change that typically
lasts between a few milliseconds to a quarter cycle of the
nominal waveform. It is characterized by its frequency content
and decay rate [7].

To determine whether the potential transient fits the os-
cillatory classification, the system implements an incremental
F-test. The F-test gives a numerical value of the significance
of additional variables added to the regression function. The
null hypothesis of the test is Hy : 83 = 84 = 85 = 0.

We implement this by first computing a least squares curve
fitting of the potential transient waveform and an exponentially
decaying sinusoid using gradient descent. The complete model
is shown in (1).

9= Bo + BreP'cos(B3 - 2t + By) (D

Then, a reduced model is fit using the same least square
fitting methods. The reduced model equation is shown in (2).

g = Bo + Bre P! )

Large values of F result in rejection of the null hypothesis
and the classification of the transient as oscillatory. The
threshold value that F must pass is a design decision and
will determine the expected type 1 and type 2 errors of the
classification.

We record additional meta-data upon this classification
including the decay rate, frequency content, dc offset, and peak
amplitude, all of which follow from the results of the curve
fitting.

E. Classifying Periodic Notching Transients

A periodic notching transient is a periodic and strictly
negative power disruption of the nominal waveform. Therefore,
the signal is first verified to be strictly negative in power
before further analysis is made. If so, the system moves on to
determine whether the potential transient waveform is periodic.

To test for periodicity the auto-correlation of the signal is
computed. Auto-correlation highlights the similarity between
the signal and its previous values. Our method convolves the
first half the transient signal with the original transient. The
convolution is only calculated for points where the signals
completely overlap. If the potential transient is indeed periodic,
then the resulting signal from the convolution will have the
same periodicity with peaks that highlight where the signal
had the highest correlation.

Our method determines the peaks of the auto-correlation
signal by setting a height threshold. Then, it finds the standard
deviation of the distance between the peaks, and if this value is
less than a defined threshold, the signal is classified as periodic.
If so, the period is easily calculated from the auto-correlation
signal along with additional meta-data to characterize the
transient.

III. IMPLEMENTATION

We implemented and tested these methods using our OPQ
system. The OPQ project began in 2012 with the goal of devel-
oping and evaluating PQ technology to support improvements
to electrical grids, in particular the incorporation of distributed
intermittent renewable energy sources.

In general, the OPQ system architecture consists of OPQ
Boxes, which are plugged into standard residential outlets to
monitor PQ as it is experienced at the point of consumption.
These results are communicated over the Internet to OPQ



Cloud, a set of cloud-based services that provide end-to-end
support for the capture, triggering, analysis, and reporting of
local and global level PQ phenomena. A major design goal of
OPQ is to not just report PQ locally for each device, but to
look at PQ in an aggregate manner. This is possible because
the OPQ cloud services provide a global view of all PQ sensors
(OPQ Boxes). Thus, OPQ is able to detect distributed PQ
incidents (where multiple distributed sensors sense the same
incident) and also observe how PQ incidents propagate through
the electrical grid.

The two principle cloud services in OPQ are called Makai
and Mauka. The Makai service is responsible for aggregating
and processing the measurements generated by the OPQ boxes.
Inside Makai, a triggering broker creates a PQ event when it
detects a deviation from the nominal waveform in a low fidelity
data stream and sends a message to the Mauka system to
analyze the event further. The Mauka service performs analysis
of high fidelity data and is thus where our transient detection
system 1is located.

Our implementation proceeds as follows.

First, the raw signal is decomposed into its fundamental
and potential transient waveform. The fundamental waveform
is extracted using a digital implementation of a 4*" order low
pass Butterworth filter with a cutoff frequency of 500 Hz.
The digital filter used is an implementation in the scientific
Python library SciPy [9]. The transient waveform is then the
raw waveform minus the fundamental waveform.

Our method does not assume that only a single transient
exists in a PQ event triggered by the Mauka system. There-
fore, before classification, the complete transient waveform is
separated into potential windows with individual transients.
This is achieved through a sliding window technique with
a predefined threshold for a maximum Iull. The maximum
Iull between transients is a design decision that is made with
domain knowledge. The transients that are being classified with
the system are expected to have a duration on the order of
milliseconds.

The sliding window method works by first scanning the
transient waveform and finding the first measurement which
is above the configuration noise floor. It is common practice
to account for potential instrumentation error by defining a
noise floor. Measurement deviating from the nominal wave-
form more than the defined noise floor are considered to
be significant and can reasonably be considered to be PQ
phenomena and not a faulty measurement. The noise floor in
the implementation is defined to be 5% of the nominal voltage.

The first measurement above the noise floor is considered
to be the starting point of the transient. Then, the scanning
continues until there is a lull in measurements above the noise
floor longer than the defined maximum, or the scanning has
reached the end of the transient signal. At which point the last
significant measurement is defined to be the endpoint of the
potential transient. This process is repeated until the end of
the transient signal is reached.

Once the start and end points of all of the potential
transients are determined, then the classification analysis can
begin. Feature extraction and the decision tree structure is de-
scribed in detail in Section II. Only important implementation
notes will be mentioned in the rest of this section.

The multiple non-linear least squares regression required
for classification of the oscillatory transient is provided in
the SciPy library [9]. The solution to the regression is an
approximation obtained by a gradient descent method. Since
the expected characteristics of oscillatory transients are known,
the gradient descent method can be seeded to increase the rate
at which a local optimum is found.

To classify periodic notching transients, a convolution oper-
ation is necessary. The code used to implement this calculation
is found in the NumPy library [10].

IV. RESULTS

To test the performance of the proposed methodology,
simulated transients were constructed and run through the
system. The configuration of the system at the time of these
reported results has the sampling rate at 12000 Hz.

First, we created a simulated waveform with an impulsive
transient by superimposing an exponentially decaying excita-
tion onto a portion of 6 cycles of a fundamental waveform.
This simulated transient has a peak amplitude of 18 volts and
decays to the noise floor in é cycles. The raw signal is shown
in Figure 1.
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Figure 1. Simulated 60 Hz 120 Vrms sine wave with an impulsive transient.
The decomposed fundamental and transient signal are shown in the bottom
left and right subfigures, respectively.

Second, we created a simulated waveform with an oscil-
latory transient by superimposing an exponentially decaying
sinusoidal wave with 960 Hz frequency with starting amplitude
of 72 volts onto a portion of 6 cycles of a fundamental
waveform. The raw signal is shown in Figure 2.

Third, we created a simulated arcing transient by drawing
7 random samples from a uniform random distribution over
the support (61,2401). We then used the random samples to
define the frequencies for single cycles of an arcing transient
wave. The raw signal is shown in Figure 3.

We simulated a multiple zero crossing transient by su-
perimposing three single sawtooth cycles in positions of the



Simulated Raw Waveform with Oscillatory Transient
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Figure 2. Simulated 60 Hz 120 Vrms sine wave with an oscillatory
transient. The decomposed fundamental and transient signal are shown in the
bottom left and right subfigures, respectively.

Simulated Raw Waveform with Arcing Transient
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Figure 3. Simulated 60 Hz 120 Vrms sine wave with an arcing transient.
The decomposed fundamental and transient signal are shown in the bottom
left and right subfigures, respectively.

fundamental waveform near a zero crossing. The single saw-
tooth cycle has an amplitude of a 72 volts and a period of 10
samples. The raw signal is shown in Figure 4.

Finally, we created a simulated waveform with a periodic
notching transient by superimposing a sawtooth waveform with
a frequency of 1440 Hz and amplitude of 18 volts for a single
fundamental cycle, i.e., 24 notches per cycle for one cycle.
We determined the polarity of the notching transient by the
fundamental signal since notching is defined to be strictly
negative in power. The raw signal is shown in Figure 5

Figures 1, 2, 3, 5 show the raw simulated waveforms with
impulsive, oscillatory, arcing, and periodic notching transients,

Simulated Raw Waveform with Multiple Zero Crossing Transient
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Figure 4. Simulated 60 Hz 120 Vrms sine wave with multiple impulsive
transients which cause additional zero crossings in the raw waveform. The
first decomposed fundamental and transient signal are shown in the bottom

left and right subfigures, respectively.

Raw Waveform With Simulated Oscillatory Transient
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Figure 5. Simulated 60 Hz 120 Vrms sine wave with a periodic notching
transient. The decomposed fundamental and transient signal are shown in the
bottom left and right subfigures, respectively.

respectively, all starting near the 600*" measurement. The
two subfigures show the extracted fundamental waveform and
transient waveform detected by the system. These simulated
waveforms were all correctly classified by the system using
our methods.

V. CONCLUSION AND FUTURE WORK

This paper presents an implementation of a transient de-
tection system using OPQ, an open source distributed PQ net-
work, which can successfully classify four types of transients
as defined in the IEEE 1159 standard. Our method shows
promise based upon its ability to correctly classify simulated



versions of all four transients.

The most immediate future work is to monitor an electrical
grid in real-time to determine how well the methods work on
real world transients.

We also hope to add functionality to OPQ that would
enable us to search our historical data for the occurrence
of transients and classify them. From this, a meta-analysis
for higher level network wide events could lead to clues
regarding the sources of these phenomena. This data could
provide new insight into our understanding of how intermittent
renewable energy sources affect PQ on the grid, helping us to
better modernize our grids with larger amounts of distributed
renewable energy.
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