
EE 496 Report: InternAloha: Revamping Scrapers

Author: Jatin Pandya
Date: November 29, 2021

Abstract:
In this report, we take a look at the service InternAloha which is a scraper that scrapes

different job sites for internships. In the report, I will go over the basics of InternAloha and
scraping, the design of InternAloha, and the technical aspects that go into InternAloha.

1 Introduction

The original goal of RadGrad was to increase the retention rate in the ICS program.
When a pilot study was conducted, a common comment students had was regarding the
“Internship Opportunities” in the application[1]. InternAloha was the solution to that comment.
InternAloha is a system that goes out to different sites such as LinkedIn and Glassdoor and
scrapes internships related to Computer Science and Computer Engineering. InternAloha uses
Puppeteer a web scraping tool that is used with Node.JS to scrape sites as its base and then builds
the InternAloha scraper on top. And then the scraper goes through scraping the data from each
site using Puppeteer functions as its base and gets the information that way. This information is
then processed and then posted on a front-end site. The original InternAloha front-end site
displayed the results from the scrapers. Now, this information is posted on the RadGrad site
where the results are then filtered based on the student’s interest, GPA, activities, and skills
which gives students an idea of what internships are out there that they would be interested in[1].
This saves the student time from going through job sites to find internships and figuring out
which ones they would be interested in.

The design of the scrapers starts off with the scraper starting up the browser and then
grabbing the URL’s or elements of each internship the scraper finds, and then going to each of
the URL’s or elements and then grabbing the data off the page. Once the data is scraped off the
page it is then formatted into a specific format, and then is put into a JSON (JavaScript Object
Notation) and then inserted into an array of internships and then later one last check is done to
make sure that the internships are related to Computer Science and Computer Engineering by
checking for terms such as “software engineering” and “hardware engineering”.

The following image below (figure 1) shows the internships showing up in the RadGrad
client based on the user jatinp@hawaii.edu’s information. The information that
jatinp@hawaii.edu gave to determine this is classes taken and interests. In this project, we aim to
revamp the InternAloha scraper by improving the implementation of scraping in general to make
the process of creating a scraper easier for users and to improve the way we get data from the
sites we scrape so we aren’t just scraping all internships that match our search criteria but also
checking position names and descriptions to make sure they match for students.

mailto:jatinp@hawaii.edu

Figure 1 Image of InternAloha Scrape Results on RadGrad

In this report, I will go over the background information for scraping, what we did in this
project in relation to the design, then going over an example of a scraper that I implemented that
is in production and comparing it to the previous iteration of that scraper, and then going over
future plans of the InternAloha project.

2 Related Work

The technology that the InternAloha service uses is called web scraping. According to
Imperva, “ Web scraping is the process of using bots to extract content and data from a website.
Unlike screen scraping, which only copies pixels displayed onscreen, web scraping extracts
underlying HTML code and, with it, data stored in a database. The scraper can then replicate
entire website content elsewhere.” The top 5 web scraping technologies that exist right now
according to PopUpSmart.com are: Scrape.do, Scrapingdog, AvesAPI, ParseHub, and Diffbot.
InternAloha differs from these existing technologies as they all charge for using them, while
InternAloha is open source. InternAloha is also based on another web scraping technology called
Puppeteer. Puppeteer is a node.js library that uses the chromium dev tools to grab the data.
According to Puppeteer, it runs headless on default which means that there is no graphical user
interface to interact with. Additionally, these web scraping tools allow for scraping on any site,
while InternAloha does allow other sites to be scrapped but its main design is for internships
from job sites.

Scraping being a popular way of grabbing data off of sites to use it for other purposes can
run into legal issues. Most sites do say in their Terms and Service that any form of scrapping is
prohibited. The reason why many sites do not want people to scrape their sites is that it could
give a competitive advantage to competitors, scrapers might be scraping data that could be
considered copyright, scraping can also cause sites to be flooded with requests which could
cause the site to crash, and since each site has their own specific security measures they need to
follow and scraping can be a security issue for them.

There was a lawsuit with a small data analytics company hiQ Labs against LinkedIn.
What hiQ Labs wanted to do was to scrape public LinkedIn profiles but LinkedIn ended up
serving hiQ a cease and desist notice. This then led hiQ to file a lawsuit against LinkedIn for the
right to scrape and to prevent LinkedIn from invoking the Computer Fraud and Abuse Act
(CFAA), the Digital Millennium Copyright Act (DMCA), California Penal Code § 502(c), or any
trespassing law that could be used against hiQ . The trial was decided on the 9th of September
2019 with the United States Court of Appeals for the Ninth Circuit ruling in favor of hiQ labs
stating that user’s private data was compromised as hiQ labs was only grabbing data that was
publicly available.

What this means is that scraping for the most part is legal as long as the data that we are
scraping is publicly available and is not hidden behind any login. Knowing these constraints
InternAloha only scrapes data it can only find on a public page without requiring any login
credentials which is considered “fair use”.

Additionally, InternAloha uses Google Cache as a scrape data which is legal and doesn’t
run the risk of companies coming after InternAloha. InternAloha also goes ahead and limits its
activity on pages to avoid looking like a bot and to make the scrapers seem more “human” so
sites do not IP(Internet Protocol) ban users of the scrapers. This means that InternAloha does not
flood sites with requests to grab data. If a website does have a login and only displays the data
that InternAloha needs, InternAloha needs to ask permission from the site owners to be able to
scrape the site. Additionally, InternAloha also checks the site’s robots.txt to make sure that when
scraping, InternAloha is not disobeying the rules the sites have when it comes to scraping.

3 Design

The design of InternAloha scrapers is that they open a browser and then they go to a
specific site and go ahead and grab URL’s or element’s and go to each one of them and then
scrape the data from each page and then format and put it into a JSON and then into an array
which is processed one more time before being sent into a JSON file. The original scraper did
this in every scraper file which meant that lines of code were being reused over and over again
across several files. These lines of code were when starting up the browser, going to a certain
page, and fetching data from the page.

In the newly revamped scraper, takes the original scraper and goes ahead and adds a few
features to improve the development of the scrapers and the usability of the scrapers. One of
these improvements is a Scraper superclass. What this superclass does is take lines of code which
is used multiple times across different files and create functions out of them. It also has a
sequence of superclass functions that can be run while running the subclass function. What this
means is when creating a child function of a parent function we can call the parent function to
start things off and then write the rest of the particular code in the child function. In particular,
when we are scraping and we want to get data, what we had to originally do is use this JavaScript
function that was in a separate file and use it whenever we need to scrape data. Instead of doing
this every time we instead now use functions getValues and getValue which are in the superclass
of the scraper and use each one depending on whether we need just 1 or multiple values from
scraping. The following image shows the implementation of both getValue and getValues.

Figure 2: Implementation of getValues and getValue

Another change to the scraper was the way we handle listings. In the newly revamped
version of the scraper, we have a specific class called listing which holds the specific information
for each internship listing. It includes the variables URL, this gives us where users can go to
apply for the specific internship they are looking at, which is a string, position, this tells the user
what the position of the internship is, which is a string, location, this tells us where the internship
is located, which is an object of strings of the city, state, and country, description, this tells us
what the internship is about, which is a string, company, this tells us which company is hosting
the internship, which is a string, contact, this tells us who to contact if there are any questions the
student may have about the internship, which is a string, posted, this tells us when the internship
was posted, which is a string, due, this is used to figure out when the internship application is
due, which is a string, and lastScrape which a date which tells us the when we scraped this.
Above that is a Listings object which holds an array of Listing. This object provides us with the
structure to be able to create the array so we can hold all of the listings. From there we can use
the function addListing to add to the listing array. We can use the function length to get the
length of the listings. And then at the end, we can use the function writeListings to be able to
write the listings to a JSON file. Compared to the original implementation we would just use a
basic structure of a Listing but there was no Listing object.

Figure 3: Listing class that we used when scraping

Figure 4: Listings class that we use when scraping to hold each Listing

More specifically is the scrape function which follows a specific pattern to scrape. The
scrape function first launches the scraper by starting the browser and going to a specific link that
is given. It then logs into that scraper if necessary and then it goes ahead and starts to generate
the listings. This is done by grabbing the URLs and creating the listings by scraping each listing
for a specific structure for the listings array and taking the data and putting it into the listings
object. And then finally there is a process listings function that takes the listings we generated
and checks to see if the internships are the ones we need or to process the listings to format the
listings in a certain way to make them look more uniform than the rest of the scrapers. If there is
an error that gets caught at any step throughout this process it is then sent to the catch statement
where it is then printed out to let the user know about what the error was. And then at the end,

the browser closes and then listings get written into the JSON file, and then a statistics file is also
made letting the user know how long the scraper took and how many listings were created.

Figure 5: Specific pattern to scrape

Additionally, the original scraper was all done in JavaScript instead of in TypeScript. The
reason why TypeScript is a better language to work with instead of JavaScript as it is more
reliable which can make it easier to refactor files, it is also really good in handling types and is a
perfect use for large and complex projects.

Another thing the new scraper uses is a Node.JS package called commander. What the
commander package does is help create a command-line interface and help process options. This
is used to help select a specific scraper and whether to put the scrapers on debug mode or not,
there are also other options that InternAloha Scraper 2.0 supports such as for multiple
disciplines. This means internships can be searched for students in computer science and
computer engineering.

When the scraping is done when listings and statistics are made for each discipline is that
each discipline is given a folder and for each scraper run their results are being saved in
listing/discipline-name or statistics/discipline-name. This also allows for other disciplines to take
this and use it for their disciplines. Another thing that this scraper does is automatically generate
statistics. These statistics include how long a scraper took to scrape a file when the scraping
occurred, the number of errors that occurred during the scrape, the number of listings that were
generated during the scrape, the name of the scrape, and finally the error messages that were
given if there were any errors that were generated.

Something that was removed from the InternAloha revamped scraper was multi-scraper
support or the original ability to run all scrapers at the same time. The reason why this was
removed was because of the way Puppeteer handles threads. Puppeteer is not considered as
“thread-safe” which means that if any errors occur they may not appear. To fix this issue
InternAloha scraper now only supports running scrapers one at a time. If you would like to run
multiple scrapers at the same time the recommended procedure is to create a script that opens
several terminal or command line windows as necessary to run as many scrapers as you have.
This is shown in figure 6. What this does is separate the scrapers into different processes so if
there is an issue that occurs in one of the scrapers it will for sure display for the scraper that ran
into that issue. The remaining issues of what needs to be implemented in scrapers are cleaning up
the Simply Hired scraper, implementing the American Express scraper, implementing the
Monster scraper, implementing the ACM scraper, implementing the LinkedIn Scraper, and
implementing the Indeed scraper.

Figure 6: Multi-Scraper running on revamped scrapers

4 Implementation

For this project, I implemented the Cisco scraper. The new implementation of the Cisco
scraper is based on the original Cisco scraper. The Cisco scraper works well where it gets all the
internships that it can find. We can check this manually by going directly to the site and
comparing the statistics to the website. The Cisco scraper also does not crash and is stable so it
can be run in production. Most of the changes in the Cisco Scraper have had to do with
unnecessary code that could be simplified. For example, in the original implementation while
getting data for the listings there is a loop that occurs which fetches data three times for no
reason and puts it into a result array which is then returned to the scraping method. While in the
new implementation there are only three lines and to get the data. The older implementation
uses a function from a JavaScript file while this uses a function from the superclass. The below
two images show the implementation of how each gets data. The top image shows the original
implementation of getting the position data. And the bottom image shows the new
implementation on how we get information from job postings.

Figure 7: Original Implementation of Get Data

Figure 8: New Implementation of Get Data

Another change to the implementation of the Cisco scraper is the way URL’s are
gathered. In the original implementation, there was an if statement and a while statement. The if
statement checks if there is no next page link if there is a next page link it goes into a while loop.
Both the inside of the if statement and the while loop are the same except in the while statement
it checks for the next page link and clicks for the next page. In the new implementation that is

changed into first getting all URL’s on the first page, then checking if there is a next page link
and then if there are the loop starts and clicks on the next page and then grabs the URL’s on that
page and adds it on into the array. It keeps doing that until there the next page link no longer
shows up. This method takes fewer lines of code and is also compartmentalized into the code
from the superclass.

Figure 9: Previous Implementation of Get URL

Figure 10: New Implementation of Get URL

A large change to the implementation of the newly implemented Cisco scraper is the way
it scrapes data and puts it into an array and how it handles Listings. In the original
implementation, it loops through a two-dimensional array of URLs, goes to the URL and then
gets the data, and then puts it into a JSON object and then into an array. In the new
implementation, a single for loop is run through the URLs goes to each URL, and then grabs the
data. It then puts it into a Listing object which is then put into a Listing array. At the end of
getting the data and putting it into the array in the first implementation, the JSON file gets
written and then the browser is closed. But in the new implementation, the writing to the JSON
file and the closing of the browser is done in the superclass after the process listings function. In
the close function and writeListings function, which is a function inside the Listing object file.

Figure 11: Old Implementation of Listing Loop

Figure 12: New Implementation of Listing Loop

Figure 13: Closing of Browser

Figure 14: Function that writesListings

The main differences between the two implementations are the way we scrape data and
the way we process the data. This new implementation of the InternAloha scraper is better than
the original scraper due to the way the code is handled. The code in the new implementation is
compartmentalized and uses a class-based system. What this means is that the most used
functions are coded in the superclass where it is easily able to be used and not have to copy and
paste the function into the code multiple times. It also makes it easier to program another scraper
as a lot of the details are taken care of and all that is needed is to figure out what elements/URLs
are needed to scrape and then process through the results to format it better and to filter out the
internships that do not need to be there.

5 Conclusion & Future Directions

The InternAloha project is used to scrape internships from different job sites to be
displayed on the RadGrad Internship page. In this project, I revamped the original Cisco scraper
by using TypeScript over JavaScript, implementing functions from a parent scraper class, and
making the code more straightforward to understand. While on this project I learned how to work
in a team effectively, setting time management habits while researching, studying, and working,
and I learned how scrapers work and use that information to implement them. What remains to
be completed in the InternAloha project is first the completion of the rest of the scrapers. The
remaining issues from the GitHub issues page, of what needs to be implemented in scrapers are
cleaning up the Simply Hired scraper, implementing the American Express scraper,
implementing the Monster scraper, implementing the ACM scraper, implementing the LinkedIn
Scraper, and implementing the Indeed scraper. Additionally, going forward from there we can
add a country option to when running the scraper. This would allow users to be able to scrape
internships in other countries. This is good as it can allow students to explore outside of the
country and be able to gain new experiences and it can open students up to going to other places
in the world rather than just looking at the mainland or just staying in Hawaii. Another future
step is also to start contacting sites that require login to view the internships to see if we are
allowed to scrape. This is so we can make sure we are not trespassing and to avoid any legal
issues that could possibly come our way. A far in the future project would be to have listings be
automatically sent to the RadGrad when running the scraper as opposed to right now where
listings need to be pushed up to the repository.

References
[1]"InternAloha", InternAloha, 2021. [Online]. Available: internaloha.github.io. [Accessed: 20- Nov- 2021].
[2]"Web Scraping", Imperva, [Online]. Available:
https://www.imperva.com/learn/application-security/web-scraping-attack/. [Accessed: 20- Nov- 2021].
[3]"README.md", InternAloha, 2020. [Online]. Available: https://github.com/internaloha/scrapers. [Accessed: 28-
Nov- 2021].
[4]G. Dreimanis, "Why You Should Choose TypeScript Over JavaScript", serokell, 2020. [Online]. Available:
https://serokell.io/blog/why-typescript [Accessed: 28- Nov- 2021].
[5]"Web Scraping Tools", popupsmart, [Online]. Available: https://popupsmart.com/blog/web-scraping-tools
[Accessed: 20- Nov- 2021].
[6]"README.md", Puppeteer, 2020. [Online]. Available: https://github.com/puppeteer/puppeteer. [Accessed: 28-
Nov- 2021].

https://serokell.io/blog/why-typescript

